

Beginning
Programming
with Python®

Beginning
Programming
with Python®

by John Paul Mueller

Beginning Programming with Python® For Dummies®

Published by: John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030-5774, www.wiley.com

Copyright © 2014 by John Wiley & Sons, Inc., Hoboken, New Jersey

Media and software compilation copyright © 2014 by John Wiley & Sons, Inc. All rights reserved.

Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or
by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permit-
ted under Sections 107 or 108 of the 1976 United States Copyright Act, without the prior written permis-
sion of the Publisher. Requests to the Publisher for permission should be addressed to the Permissions
Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008,
or online at http://www.wiley.com/go/permissions.

Trademarks: Wiley, For Dummies, the Dummies Man logo, Dummies.com, Making Everything Easier,
and related trade dress are trademarks or registered trademarks of John Wiley & Sons, Inc. and may not
be used without written permission. Python is a registered trademark of Python Software Foundation
Corporation. All other trademarks are the property of their respective owners. John Wiley & Sons, Inc. is
not associated with any product or vendor mentioned in this book.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE NO
REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF
THE CONTENTS OF THIS WORK AND SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING WITH-
OUT LIMITATION WARRANTIES OF FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY MAY BE
CREATED OR EXTENDED BY SALES OR PROMOTIONAL MATERIALS. THE ADVICE AND STRATEGIES
CONTAINED HEREIN MAY NOT BE SUITABLE FOR EVERY SITUATION. THIS WORK IS SOLD WITH THE
UNDERSTANDING THAT THE PUBLISHER IS NOT ENGAGED IN RENDERING LEGAL, ACCOUNTING, OR
OTHER PROFESSIONAL SERVICES. IF PROFESSIONAL ASSISTANCE IS REQUIRED, THE SERVICES OF
A COMPETENT PROFESSIONAL PERSON SHOULD BE SOUGHT. NEITHER THE PUBLISHER NOR THE
AUTHOR SHALL BE LIABLE FOR DAMAGES ARISING HEREFROM. THE FACT THAT AN ORGANIZATION
OR WEBSITE IS REFERRED TO IN THIS WORK AS A CITATION AND/OR A POTENTIAL SOURCE OF
FURTHER INFORMATION DOES NOT MEAN THAT THE AUTHOR OR THE PUBLISHER ENDORSES THE
INFORMATION THE ORGANIZATION OR WEBSITE MAY PROVIDE OR RECOMMENDATIONS IT MAY
MAKE. FURTHER, READERS SHOULD BE AWARE THAT INTERNET WEBSITES LISTED IN THIS WORK
MAY HAVE CHANGED OR DISAPPEARED BETWEEN WHEN THIS WORK WAS WRITTEN AND WHEN
IT IS READ.

For general information on our other products and services, please contact our Customer Care Department
within the U.S. at 877-762-2974, outside the U.S. at 317-572-3993, or fax 317-572-4002. For technical support,
please visit www.wiley.com/techsupport.

Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some material included
with standard print versions of this book may not be included in e-books or in print-on-demand. If this book
refers to media such as a CD or DVD that is not included in the version you purchased, you may download
this material at http://booksupport.wiley.com. For more information about Wiley products, visit
www.wiley.com.

Library of Congress Control Number: 2014935516

ISBN 978-1-118-89145-2 (pbk); ISBN 978-1-118-89147-6 (ebk); ISBN ePDF 978-1-118-89149-0 (ebk)

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

Contents at a Glance
Introduction .. 1

Part I: Getting Started with Python 5
Chapter 1: Talking to Your Computer ... 7
Chapter 2: Getting Your Own Copy of Python ... 21
Chapter 3: Interacting with Python ... 39
Chapter 4: Writing Your First Application .. 57

Part II: Talking the Talk ... 81
Chapter 5: Storing and Modifying Information .. 83
Chapter 6: Managing Information .. 93
Chapter 7: Making Decisions .. 117
Chapter 8: Performing Repetitive Tasks ... 133
Chapter 9: Dealing with Errors ... 149

Part III: Performing Common Tasks 181
Chapter 10: Interacting with Modules ... 183
Chapter 11: Working with Strings .. 205
Chapter 12: Managing Lists .. 223
Chapter 13: Collecting All Sorts of Data .. 243
Chapter 14: Creating and Using Classes ... 267

Part IV: Performing Advanced Tasks 291
Chapter 15: Storing Data in Files .. 293
Chapter 16: Sending an E-Mail .. 309

Part V: The Part of Tens ... 327
Chapter 17: Ten Amazing Programming Resources .. 329
Chapter 18: Ten Ways to Make a Living with Py thon ... 339
Chapter 19: Ten Interesting Tools ... 347
Chapter 20: Ten Libraries You Need to Know About .. 357

Index .. 365

Table of Contents
Introduction ... 1

About This Book .. 1
Foolish Assumptions ... 2
Icons Used in This Book ... 3
Beyond the Book ... 3
Where to Go from Here ... 4

Part I: Getting Started with Python 5

Chapter 1: Talking to Your Computer . 7
Understanding Why You Want to Talk to Your Computer 7
Knowing that an Application is a Form of Communication 9

Thinking about procedures you use daily .. 9
Writing procedures down ... 10
Seeing applications as being like any other procedure 11
Understanding that computers take things literally 11

Defining What an Application Is .. 12
Understanding that computers use a special language 12
Helping humans speak to the computer ... 13

Understanding Why Python is So Cool ... 14
Unearthing the reasons for using Python ... 15
Deciding how you can personally benefit from Python 16
Discovering which organizations use Python 17
Finding useful Python applications ... 18
Comparing Python to other languages ... 18

Chapter 2: Getting Your Own Copy of Python . 21
Downloading the Version You Need ... 21
Installing Python .. 24

Working with Windows ... 25
Working with the Mac ... 27
Working with Linux .. 29

Accessing Python on Your Machine ... 32
Using Windows ... 32
Using the Mac ... 35
Using Linux ... 36

Testing Your Installation .. 36

Beginning Programming with Python For Dummies viii
Chapter 3: Interacting with Python . 39

Opening the Command Line ... 40
Starting Python .. 41
Using the command line to your advantage 42
Using Python environment variables to your advantage 44

Typing a Command ... 45
Telling the computer what to do ... 46
Telling the computer you’re done ... 46
Seeing the result... 46

Using Help ... 48
Getting into help mode.. 48
Asking for help ... 49
Leaving help mode ... 52
Obtaining help directly ... 52

Closing the Command Line .. 54

Chapter 4: Writing Your First Application . 57
Understanding the Integrated DeveLopment Environment (IDLE) 58
Starting IDLE ... 59

Using standard commands ... 60
Understanding color coding ... 61
Getting GUI help ... 62
Configuring IDLE .. 63

Creating the Application ... 67
Opening a new window ... 67
Typing the command .. 68
Saving the file ... 69

Running the Application ... 71
Understanding the Use of Indentation .. 72
Adding Comments ... 74

Understanding comments... 74
Using comments to leave yourself reminders 75
Using comments to keep code from executing 75

Loading and Running Existing Applications .. 78
Using the command line or terminal window 78
Using the Edit window... 79
Using the Python Shell window or Python command line 79

Closing IDLE ... 80

Part II: Talking the Talk .. 81

Chapter 5: Storing and Modifying Information . 83
Storing Information ... 83

Seeing variables as storage boxes ... 84
Using the right box to store the data .. 84

ix Table of Contents

Defining the Essential Python Data Types ... 85
Putting information into variables ... 85
Understanding the numeric types ... 85
Understanding Boolean values .. 89
Understanding strings ... 90

Working with Dates and Times .. 91

Chapter 6: Managing Information . 93
Controlling How Python Views Data ... 94

Making comparisons ... 94
Understanding how computers make comparisons 95

Working with Operators ... 95
Defining the operators .. 96
Understanding operator precedence .. 103

Creating and Using Functions .. 104
Viewing functions as code packages ... 104
Understanding code reusability ... 104
Defining a function ... 105
Accessing functions ... 107
Sending information to functions .. 108
Returning information from functions .. 112
Comparing function output .. 114

Getting User Input ... 114

Chapter 7: Making Decisions . 117
Making Simple Decisions Using the if Statement 118

Understanding the if statement ... 118
Using the if statement in an application ... 119

Choosing Alternatives Using the if...else Statement 124
Understanding the if...else statement ... 124
Using the if...else statement in an application 124
Using the if...elif statement in an application 125

Using Nested Decision Statements .. 129
Using multiple if or if...else statements ... 129
Combining other types of decisions .. 130

Chapter 8: Performing Repetitive Tasks . 133
Processing Data Using the for Statement ... 134

Understanding the for statement ... 134
Creating a basic for loop ... 135
Controlling execution with the break statement 136
Controlling execution with the continue statement 138
Controlling execution with the pass clause 140
Controlling execution with the else statement 141

Beginning Programming with Python For Dummies x
Processing Data Using the while Statement ... 143

Understanding the while statement .. 143
Using the while statement in an application 144

Nesting Loop Statements .. 145

Chapter 9: Dealing with Errors . 149
Knowing Why Python Doesn’t Understand You 150
Considering the Sources of Errors .. 151

Classifying when errors occur ... 152
Distinguishing error types .. 153

Catching Exceptions .. 155
Basic exception handling .. 156
Handling more specific to less specific exceptions....................... 167
Nested exception handling ... 170

Raising Exceptions .. 174
Raising exceptions during exceptional conditions........................ 174
Passing error information to the caller ... 175

Creating and Using Custom Exceptions .. 176
Using the finally Clause ... 178

Part III: Performing Common Tasks 181

Chapter 10: Interacting with Modules . 183
Creating Code Groupings ... 184
Importing Modules .. 185

Using the import statement .. 187
Using the from...import statement .. 188

Finding Modules on Disk .. 191
Viewing the Module Content .. 193
Using the Python Module Documentation ... 198

Opening the pydoc application .. 198
Using the quick-access links ... 200
Typing a search term .. 202
Viewing the results .. 203

Chapter 11: Working with Strings . 205
Understanding That Strings Are Different .. 206

Defining a character using numbers ... 206
Using characters to create strings... 207

Creating Stings with Special Characters ... 208
Selecting Individual Characters ... 211
Slicing and Dicing Strings ... 213
Locating a Value in a String .. 217
Formatting Strings ... 219

xi Table of Contents

Chapter 12: Managing Lists . 223
Organizing Information in an Application .. 224

Defining organization using lists .. 224
Understanding how computers view lists 225

Creating Lists ... 226
Accessing Lists ... 228
Looping Through Lists .. 231
Modifying Lists ... 232
Searching Lists ... 236
Sorting Lists .. 238
Working with the Counter Object .. 240

Chapter 13: Collecting All Sorts of Data . 243
Understanding Collections ... 243
Working with Tuples ... 245
Working with Dictionaries .. 248

Creating and using a dictionary ... 249
Replacing the switch statement with a dictionary 253

Creating Stacks Using Lists .. 256
Working with queues .. 260
Working with deques .. 263

Chapter 14: Creating and Using Classes . 267
Understanding the Class as a Packaging Method 268
Considering the Parts of a Class .. 269

Creating the class definition ... 269
Considering the built-in class attributes... 271
Working with methods .. 273
Working with constructors ... 275
Working with variables ... 277
Using methods with variable argument lists 281
Overloading operators .. 282

Creating a Class ... 284
Using the Class in an Application .. 285
Extending Classes to Make New Classes .. 287

Building the child class ... 287
Testing the class in an application .. 289

Part IV: Performing Advanced Tasks 291

Chapter 15: Storing Data in Files . 293
Understanding How Permanent Storage Works 294
Creating Content for Permanent Storage ... 295
Creating a File .. 298

Beginning Programming with Python For Dummies xii
Reading File Content ... 301
Updating File Content ... 303
Deleting a File ... 308

Chapter 16: Sending an E-Mail . 309
Understanding What Happens When You Send E-Mail 310

Viewing e-mail as you do a letter ... 311
Defining the parts of the envelope .. 312
Defining the parts of the letter ... 318

Creating the E-mail Message .. 322
Working with a text message.. 323
Working with an HTML message ... 324

Seeing the E-mail Output .. 325

Part V: The Part of Tens .. 327

Chapter 17: Ten Amazing Programming Resources 329
Working with the Python Documentation Online 330
Using the LearnPython.org Tutorial ... 331
Performing Web Programming Using Python .. 332
Getting Additional Libraries ... 332
Creating Applications Faster Using an IDE ... 334
Checking Your Syntax with Greater Ease ... 334
Using XML to Your Advantage ... 335
Getting Past the Common Python Newbie Errors 336
Understanding Unicode .. 337
Making Your Python Application Fast .. 338

Chapter 18: Ten Ways to Make a Living with Py thon 339
Working in QA .. 340
Becoming the IT Staff for a Smaller Organization 341
Performing Specialty Scripting for Applications 342
Administering a Network .. 343
Teaching Programming Skills ... 343
Helping People Decide on Location .. 344
Performing Data Mining .. 344
Interacting with Embedded Systems .. 345
Carrying Out Scientific Tasks ... 345
Performing Real-Time Analysis of Data .. 346

xiii Table of Contents

Chapter 19: Ten Interesting Tools . 347
Tracking Bugs with Roundup Issue Tracker .. 348
Creating a Virtual Environment Using VirtualEnv 349
Installing Your Application Using PyInstaller .. 350
Building Developer Documentation Using pdoc 351
Developing Application Code Using Komodo Edit 352
Debugging Your Application Using pydbgr .. 353
Entering an Interactive Environment using IPython 354
Testing Python Applications using PyUnit ... 354
Tidying Your Code Using Isort ... 355
Providing Version Control Using Mercurial ... 355

Chapter 20: Ten Libraries You Need to Know About 357
Developing a Secure Environment Using PyCrypto 358
Interacting with Databases Using SQLAlchemy 358
Seeing the World Using Google Maps ... 359
Adding a Graphical User Interface Using TkInter 359
Providing a Nice Tabular Data Presentation Using PrettyTable 360
Enhancing Your Application with Sound Using PyAudio 360
Manipulating Images using PyQtGraph .. 361
Locating Your Information Using IRLib .. 362
Creating an Interoperable Java Environment Using JPype 363
Accessing Local Network Resources Using Twisted Matrix 364
Accessing Internet Resources Using Libraries .. 364

Index ... 365

Beginning Programming with Python For Dummies xiv

Introduction

Q
uick! Which programming language will get you up and running writ-
ing applications on every popular platform around? Give up? Yes, it’s

Python. The amazing thing about Python is that you really can write an appli-
cation on one platform and use it on every other platform that you need to
support. Unlike the other programming languages that promised to provide
platform independence, Python really does make that independence pos-
sible. In this case, the promise is as good as the result you get.

Python emphasizes code readability and a concise syntax that lets you write
applications using fewer lines of code than other programming languages
require. In addition, because of the way Python works, you find it used in all
sorts of fields that are filled with nonprogrammers. Some people view Python
as a scripted language, but it really is so much more. (Chapter 18 provides you
with just an inkling of the occupations that rely on Python to make things work.)

About This Book
Beginning Programming with Python For Dummies is all about getting up and
running with Python quickly. You want to learn the language fast so that you
can become productive in using it to perform your real job, which could be
anything. Unlike most books on the topic, this one starts you right at the
beginning by showing you what makes Python different from other languages
and how it can help you perform useful work in a job other than program-
ming. As a result, you gain an understanding of what you need to do from the
start, using hands-on examples and spending a good deal of time performing
actually useful tasks. You even get help with installing Python on your par-
ticular system.

When you have a good installation on whatever platform you’re using, you
start with the basics and work your way up. By the time you finish working
through the examples in this book, you’ll be writing simple programs and

2 Beginning Programming with Python For Dummies

performing tasks such as sending an e-mail using Python. No, you won’t be
an expert, but you will be able to use Python to meet specific needs in the job
environment. To make absorbing the concepts even easier, this book uses the
following conventions:

 ✓ Text that you’re meant to type just as it appears in the book is bold. The
exception is when you’re working through a step list: Because each step
is bold, the text to type is not bold.

 ✓ When you see words in italics as part of a typing sequence, you need to
replace that value with something that works for you. For example, if
you see “Type Your Name and press Enter,” you need to replace Your
Name with your actual name.

 ✓ Web addresses and programming code appear in monofont. If you’re
reading a digital version of this book on a device connected to the
Internet, note that you can click the web address to visit that website,
like this: www.dummies.com.

 ✓ When you need to type command sequences, you see them separated
by a special arrow, like this: File➪New File. In this case, you go to the File
menu first and then select the New File entry on that menu. The result is
that you see a new file created.

Foolish Assumptions
You might find it difficult to believe that I’ve assumed anything about you — after
all, I haven’t even met you yet! Although most assumptions are indeed foolish, I
made these assumptions to provide a starting point for the book.

It’s important that you’re familiar with the platform you want to use because
the book doesn’t provide any guidance in this regard. (Chapter 2 does provide
Python installation instructions for various platforms.) In order to provide
you with maximum information about Python, this book doesn’t discuss any
platform-specific issues. You really do need to know how to install applications,
use applications, and generally work with your chosen platform before you
begin working with this book.

This book also assumes that you can find things on the Internet. Sprinkled
throughout are numerous references to online material that will enhance
your learning experience. However, these added sources are useful only if
you actually find and use them.

3 Introduction

Icons Used in This Book
As you read this book, you see icons in the margins that indicate material of
interest (or not, as the case may be).This section briefly describes each icon
in this book.

 Tips are nice because they help you save time or perform some task without a
lot of extra work. The tips in this book are time-saving techniques or pointers
to resources that you should try in order to get the maximum benefit from
Python.

 I don’t want to sound like an angry parent or some kind of maniac, but you
should avoid doing anything marked with a Warning icon. Otherwise, you
could find that your program only serves to confuse users, who will then
refuse to work with it.

 Whenever you see this icon, think advanced tip or technique. You might find
these tidbits of useful information just too boring for words, or they could
contain the solution you need to get a program running. Skip these bits of
information whenever you like.

 If you don’t get anything else out of a particular chapter or section, remember
the material marked by this icon. This text usually contains an essential pro-
cess or a bit of information that you must know to write Python programs
successfully.

Beyond the Book
This book isn’t the end of your Python programming experience — it’s really
just the beginning. I provide online content to make this book more flexible
and better able to meet your needs. That way, as I receive e-mail from you,
I can do things like address questions and tell you how updates to either
Python or its associated libraries affect book content. In fact, you gain access
to all these cool additions:

 ✓ Cheat sheet: You remember using crib notes in school to make a better
mark on a test, don’t you? You do? Well, a cheat sheet is sort of like that.
It provides you with some special notes about tasks that you can do with
Python that not every other developer knows. You can find the cheat
sheet for this book at http://www.dummies.com/cheatsheet/beg
inningprogrammingwithpython. It contains really neat information
like the top ten mistakes developers make when working with Python and
some of the Python syntax that gives most developers problems.

4 Beginning Programming with Python For Dummies

 ✓ Dummies.com online articles: A lot of readers were skipping past the
parts pages in the book, so I decided to remedy that. You now have a
really good reason to read the parts pages, and that’s online content.
Every parts page has an article associated with it that provides addi-
tional interesting information that wouldn’t fit in the book. You can find
the articles for this book at http://www.dummies.com/extras/begi
nningprogrammingwithpython.

 ✓ Updates: Sometimes changes happen. For example, I might not have
seen an upcoming change when I looked into my crystal ball during
the writing of this book. In the past, that simply meant the book would
become outdated and less useful, but you can now find updates to the
book at http://www.dummies.com/extras/beginningprogrammin
gwithpython.

 In addition to these updates, check out the blog posts with answers to
reader questions and demonstrations of useful book-related techniques
at http://blog.johnmuellerbooks.com/.

 ✓ Companion files: Hey! Who really wants to type all the code in the book?
Most readers would prefer to spend their time actually working through
coding examples, rather than typing. Fortunately for you, the source code
is available for download, so all you need to do is read the book to learn
Python coding techniques. Each of the book examples even tells you pre-
cisely which example project to use. You can find these files at http://
www.dummies.com/extras/beginningprogrammingwithpython.

Where to Go from Here
It’s time to start your Programming with Python adventure! If you’re a complete
programming novice, you should start with Chapter 1 and progress through the
book at a pace that allows you to absorb as much of the material as possible.

If you’re a novice who’s in an absolute rush to get going with Python as quickly
as possible, you could skip to Chapter 2 with the understanding that you may
find some topics a bit confusing later. Skipping to Chapter 3 is possible if you
already have Python installed, but be sure to at least skim Chapter 2 so that
you know what assumptions were made when writing this book.

Readers who have some exposure to Python can save time by moving directly
to Chapter 5. You can always go back to earlier chapters as necessary when
you have questions. However, it’s important that you understand how each
example works before moving to the next one. Every example has important
lessons for you, and you could miss vital content if you start skipping too
much information.

Part I
Getting Started with Python

 Visit www.dummies.com for great Dummies content online.

In this part . . .
 ✓ Discover what programming is all about and why you need

Python to do it.

 ✓ Get your own copy of Python and install it on your system.

 ✓ Work with the interactive environment that Python
provides.

 ✓ Create your first application using Python.

 ✓ Understand the benefits of adding comments to your
application.

Chapter 1

Talking to Your Computer
In This Chapter
▶ Talking to your computer

▶ Creating programs to talk to your computer

▶ Understanding what a program does and why you want to create it

▶ Considering why you want to use Python as your programming language

H
aving a conversation with your computer might sound like the script of
a science fiction movie. After all, the members of the Enterprise on Star

Trek regularly talked with their computer. In fact, the computer often talked
back. However, with the rise of Apple’s Siri (http://www.apple.com/ios/
siri/) and other interactive software, perhaps you really don’t find a con-
versation so unbelievable.

 Asking the computer for information is one thing, but providing it with instruc-
tions is quite another. This chapter considers why you want to instruct your
computer about anything and what benefit you gain from it. You also discover
the need for a special language when performing this kind of communication
and why you want to use Python to accomplish it. However, the main thing
to get out of this chapter is that programming is simply a kind of communica-
tion that is akin to other forms of communication you already have with your
computer.

Understanding Why You Want
to Talk to Your Computer

Talking to a machine may seem quite odd at first, but it’s necessary because
a computer can’t read your mind — yet. Even if the computer did read your
mind, it would still be communicating with you. Nothing can occur without
an exchange of information between the machine and you. Activities such as

8 Part I: Getting Started with Python

 ✓ Reading your e-mail

 ✓ Writing about your vacation

 ✓ Finding the greatest gift in the world

are all examples of communication that occurs between a computer and you.
That the computer further communicates with other machines or people to
address requests that you make simply extends the basic idea that communi-
cation is necessary to produce any result.

In most cases, the communication takes place in a manner that is nearly
invisible to you unless you really think about it. For example, when you visit
a chat room online, you might think that you’re communicating with another
person. However, you’re communicating with your computer, your computer
is communicating with the other person’s computer through the chat room
(whatever it consists of), and the other person’s computer is communicating
with that person. Figure 1-1 gives you an idea of what is actually taking place.

Figure 1-1:
Commu­
nication

with your
computer

may be
invisible

unless you
really think

about it.

Notice the cloud in the center of Figure 1-1. The cloud could contain any-
thing, but you know that it at least contains other computers running other
applications. These computers make it possible for your friend and you to
chat. Now, think about how easy the whole process seems when you’re using
the chat application. Even though all these things are going on in the back-
ground, it seems as if you’re simply chatting with your friend and the process
itself is invisible.

9 Chapter 1: Talking to Your Computer

Knowing that an Application
is a Form of Communication

Computer communication occurs through the use of applications. You use
one application to answer your e-mail, another to purchase goods, and still
another to create a presentation. An application (sometimes called an app)
provides the means to express human ideas to the computer in a manner the
computer can understand and defines the tools needed to shape the data
used for the communication in specific ways. Data used to express the con-
tent of a presentation is different from data used to purchase a present for
your mother. The way you view, use, and understand the data is different for
each task, so you must use different applications to interact with the data in
a manner that both the computer and you can understand.

It’s possible to obtain applications to meet just about any general need you
can conceive of today. In fact, you probably have access to applications for
which you haven’t even thought about a purpose yet. Programmers have
been busy creating millions of applications of all types for many years now,
so it may be hard to understand what you can accomplish by creating some
new method for talking with your computer through an application. The
answer comes down to thinking about the data and how you want to interact
with it. Some data simply isn’t common enough to have attracted the atten-
tion of a programmer, or you may need the data in a format that no appli-
cation currently supports, so you don’t have any way to tell the computer
about it unless you create a custom application to do it.

The following sections describe applications from the perspective of working
with unique data in a manner that is special in some way. For example, you
might have access to a video library database but no method to access it in
a way that makes sense to you. The data is unique and your access needs are
special, so you may want to create an application that addresses both the
data and your needs.

Thinking about procedures you use daily
A procedure is simply a set of steps you follow to perform a task. For example,
when making toast, you might use a procedure like this:

 1. Get the bread and butter from the refrigerator.

 2. Open the bread bag and take out two pieces of toast.

 3. Remove the cover from the toaster.

10 Part I: Getting Started with Python

 4. Place each piece of bread in its own slot.

 5. Push the toaster lever down to start toasting the bread.

 6. Wait for the toasting process to complete.

 7. Remove toast from the toaster.

 8. Place toast on a plate.

 9. Butter the toast.

Your procedure might vary from the one presented here, but it’s unlikely that
you’d butter the toast before placing it in the toaster. Of course, you do actu-
ally have to remove the bread from the wrapper before you toast it (placing
the bread, wrapper and all, into the toaster would likely produce undesirable
results). Most people never actually think about the procedure for making
toast. However, you use a procedure like this one even though you don’t
think about it.

 Computers can’t perform tasks without a procedure. You must tell the com-
puter which steps to perform, the order in which to perform them, and any
exceptions to the rule that could cause failure. All this information (and more)
appears within an application. In short, an application is simply a written pro-
cedure that you use to tell the computer what to do, when to do it, and how to
do it. Because you’ve been using procedures all your life, all you really need
to do is apply the knowledge you already possess to what a computer needs
to know about specific tasks.

Writing procedures down
When I was in grade school, our teacher asked us to write a paper about
making toast. After we turned in our papers, she brought in a toaster and
some loaves of bread. Each paper was read and demonstrated. None of our
procedures worked as expected, but they all produced humorous results. In
my case, I forgot to tell the teacher to remove the bread from the wrapper,
so she dutifully tried to stuff the piece of bread, wrapper and all, into the
toaster. The lesson stuck with me. Writing about procedures can be quite
hard because we know precisely want we want to do, but often we leave
steps out — we assume that the other person also knows precisely what we
want to do.

Many experiences in life revolve around procedures. Think about the check-
list used by pilots before a plane takes off. Without a good procedure, the
plane could crash. Learning to write a great procedure takes time, but it’s
doable. You may have to try several times before you get a procedure that

11 Chapter 1: Talking to Your Computer

works completely, but eventually you can create one. Writing procedures
down isn’t really sufficient, though — you also need to test the procedure by
using someone who isn’t familiar with the task involved. When working with
computers, the computer is your perfect test subject.

Seeing applications as being
like any other procedure
A computer acts like the grade school teacher in my example in the previ-
ous section. When you write an application, you’re writing a procedure that
defines a series of steps that the computer should perform to accomplish
whatever task you have in mind. If you leave out a step, the results won’t be
what you expected. The computer won’t know what you mean or that you
intended for it to perform certain tasks automatically. The only thing the
computer knows is that you have provided it with a specific procedure and it
needs to perform that procedure.

Understanding that computers
take things literally
People eventually get used to the procedures you create. They automatically
compensate for deficiencies in your procedure or make notes about things
that you left out. In other words, people compensate for problems with the
procedures that you write.

 When you begin writing computer programs, you’ll get frustrated because
computers perform tasks precisely and read your instructions literally. For
example, if you tell the computer that a certain value should equal 5, the com-
puter will look for a value of exactly 5. A human might see 4.9 and know that
the value is good enough, but a computer doesn’t see things that way. It sees
a value of 4.9 and decides that it doesn’t equal 5 exactly. In short, computers
are inflexible, unintuitive, and unimaginative. When you write a procedure for
a computer, the computer will do precisely as you ask absolutely every time
and never modify your procedure or decide that you really meant for it to do
something else.

12 Part I: Getting Started with Python

Defining What an Application Is
As previously mentioned, applications provide the means to define express
human ideas in a manner that a computer can understand. To accomplish
this goal, the application relies on one or more procedures that tell the com-
puter how to perform the tasks related to the manipulation of data and its
presentation. What you see onscreen is the text from your word processor,
but to see that information, the computer requires procedures for retrieving
the data from disk, putting it into a form you can understand, and then pre-
senting it to you. The following sections define the specifics of an application
in more detail.

Understanding that computers
use a special language
Human language is complex and difficult to understand. Even applications
such as Siri have serious limits in understanding what you’re saying. Over the
years, computers have gained the capability to input human speech as data
and to understand certain spoken words as commands, but computers still
don’t quite understand human speech to any significant degree. The difficulty
of human speech is exemplified in the way lawyers work. When you read
legalese, it appears as a gibberish of sorts. However, the goal is to state ideas
and concepts in a way that isn’t open to interpretation. Lawyers seldom suc-
ceed in meeting their objective precisely because human speech is imprecise.

Given what you know from previous sections of this chapter, computers
could never rely on human speech to understand the procedures you write.
Computers always take things literally, so you’d end up with completely
unpredictable results if you were to use human language to write applica-
tions. That’s why humans use special languages, called programming lan-
guages, to communicate with computers. These special languages make it
possible to write procedures that are both specific and completely under-
standable by both humans and computers.

 Computers don’t actually speak any language. They use binary codes to flip
switches internally and to perform math calculations. Computers don’t even
understand letters — they understand only numbers. A special application
turns the computer-specific language you use to write a procedure into binary
codes. For the purposes of this book, you really don’t need to worry too
much about the low-level specifics of how computers work at the binary level.
However, it’s interesting to know that computers speak math and numbers,
not really a language at all.

13 Chapter 1: Talking to Your Computer

Helping humans speak to the computer
It’s important to keep the purpose of an application in mind as you write it.
An application is there to help humans speak to the computer in a certain
way. Every application works with some type of data that is input, stored,
manipulated, and output so that the humans using the application obtain a
desired result. Whether the application is a game or a spreadsheet, the basic
idea is the same. Computers work with data provided by humans to obtain a
desired result.

When you create an application, you’re providing a new method for humans
to speak to the computer. The new approach you create will make it possible
for other humans to view data in new ways. The communication between
human and computer should be easy enough that the application actually
disappears from view. Think about the kinds of applications you’ve used in
the past. The best applications are the ones that let you focus on whatever
data you’re interacting with. For example, a game application is consid-
ered immersive only if you can focus on the planet you’re trying to save
or the ship you’re trying to fly, rather than the application that lets you do
these things.

 One of the best ways to start thinking about how you want to create an appli-
cation is to look at the way other people create applications. Writing down
what you like and dislike about other applications is a useful way to start
discovering how you want your applications to look and work. Here are some
questions you can ask yourself as you work with the applications:

 ✓ What do I find distracting about the application?

 ✓ Which features were easy to use?

 ✓ Which features were hard to use?

 ✓ How did the application make it easy to interact with my data?

 ✓ How would I make the data easier to work with?

 ✓ What do I hope to achieve with my application that this application
doesn’t provide?

Professional developers ask many other questions as part of creating an
application, but these are good starter questions because they begin to help
you think about applications as a means to help humans speak with com-
puters. If you’ve ever found yourself frustrated by an application you used,
you already know how other people will feel if you don’t ask the appropriate
questions when you create your application. Communication is the most
important element of any application you create.

14 Part I: Getting Started with Python

You can also start to think about the ways in which you work. Start writing
procedures for the things you do. It’s a good idea to take the process one
step at a time and write everything you can think of about that step. When
you get finished, ask someone else to try your procedure to see how it actu-
ally works. You might be surprised to learn that even with a lot of effort, you
can easily forget to include steps.

 The world’s worst application usually begins with a programmer who doesn’t
know what the application is supposed to do, why it’s special, what need it
addresses, or whom it is for. When you decide to create an application, make
sure that you know why you’re creating it and what you hope to achieve. Just
having a plan in place really helps make programming fun. You can work on
your new application and see your goals accomplished one at a time until you
have a completed application to use and show off to your friends (all of whom
will think you’re really cool for creating it).

Understanding Why Python is So Cool
Many programming languages are available today. In fact, a student can
spend an entire semester in college studying computer languages and still
not hear about them all. (I did just that during my college days.) You’d think
that programmers would be happy with all these programming languages and
just choose one to talk to the computer, but they keep inventing more.

 Programmers keep creating new languages for good reason. Each language has
something special to offer — something it does exceptionally well. In addition,
as computer technology evolves, so do the programming languages in order to
keep up. Because creating an application is all about efficient communication,
many programmers know multiple programming languages so that they can
choose just the right language for a particular task. One language might work
better to obtain data from a database, and another might create user interface
elements especially well.

As with every other programming language, Python does some things excep-
tionally well, and you need to know what they are before you begin using
it. You might be amazed by the really cool things you can do with Python.
Knowing a programming language’s strengths and weaknesses helps you use
it better as well as avoid frustration by not using the language for things it
doesn’t do well. The following sections help you make these sorts of deci-
sions about Python.

15 Chapter 1: Talking to Your Computer

Unearthing the reasons for using Python
Most programming languages are created with specific goals in mind. These
goals help define the language characteristics and determine what you can
do with the language. There really isn’t any way to create a programming
 language that does everything because people have competing goals and
needs when creating applications. When it comes to Python, the main objec-
tive was to create a programming language that would make programmers
efficient and productive. With that in mind, here are the reasons that you
want to use Python when creating an application:

 ✓ Less application development time: Python code is usually 2–10 times
shorter than comparable code written in languages like C/C++ and Java,
which means that you spend less time writing your application and more
time using it.

 ✓ Ease of reading: A programming language is like any other language —
you need to be able to read it to understand what it does. Python code
tends to be easier to read than the code written in other languages,
which means you spend less time interpreting it and more time making
essential changes.

 ✓ Reduced learning time: The creators of Python wanted to make a pro-
gramming language with fewer odd rules that make the language hard
to learn. After all, programmers want to create applications, not learn
obscure and difficult languages.

 It’s important to realize that, although Python is a popular language, it’s not
the most popular language out there. In fact, it currently ranks eighth on
sites such as TIOBE (http://www.tiobe.com/index.php/content/
paperinfo/tpci/index.html), an organization that tracks usage statistics
(among other things). If you’re looking for a language solely for the purpose of
obtaining a job, Python is a good choice, but C/C++, Java, C#, or Visual Basic
would be better choices. Make sure you choose a language you like and one
that will address your application development needs, but also choose on the
basis of what you intend to accomplish. Python was the language of the year
in both 2007 and 2010 and has ranked as high as the fourth most popular lan-
guage in February 2011. So, really, it’s a good choice if you’re looking for a job,
but not necessarily the best choice. However, it may surprise you to know that
many colleges now use Python to teach coding, and it has become the most
popular language in that venue. Check out my blog post at http://blog.
johnmuellerbooks.com/2014/07/14/python-as-a-learning-tool
for details.

16 Part I: Getting Started with Python

Deciding how you can personally
benefit from Python
Ultimately, you can use any programming language to write any sort of appli-
cation you want. If you use the wrong programming language for the job,
the process will be slow, error prone, bug ridden, and you’ll absolutely hate
it — but you can get the job done. Of course, most of us would rather avoid
horribly painful experiences, so it’s important to know what sorts of applica-
tions people typically use Python to create. Here’s a list of the most common
uses for Python (although people do use it for other purposes):

 ✓ Creating rough application examples: Developers often need to create a
prototype, a rough example of an application, before getting the resources
to create the actual application. Python emphasizes productivity, so you
can use it to create prototypes of an application quickly.

 ✓ Scripting browser-based applications: Even though JavaScript is prob-
ably the most popular language used for browser-based application
scripting, Python is a close second. Python offers functionality that
JavaScript doesn’t provide (see the comparison at https://blog.
glyphobet.net/essay/2557 for details) and its high efficiency makes
it possible to create browser-based applications faster (a real plus in
today’s fast-paced world).

 ✓ Designing mathematic, scientific, and engineering applications:
Interestingly enough, Python provides access to some really cool librar-
ies that make it easier to create math, scientific, and engineering applica-
tions. The two most popular libraries are NumPy (http://www.numpy.
org/) and SciPy (http://www.scipy.org/). These libraries greatly
reduce the time you spend writing specialized code to perform common
math, scientific, and engineering tasks.

 ✓ Working with XML: The eXtensible Markup Language (XML) is the basis
of most data storage needs on the Internet and many desktop applica-
tions today. Unlike most languages, where XML is just sort of bolted
on, Python makes it a first-class citizen. If you need to work with a Web
service, the main method for exchanging information on the Internet (or
any other XML-intensive application), Python is a great choice.

 ✓ Interacting with databases: Business relies heavily on databases. Python
isn’t quite a query language, like the Structure Query Language (SQL) or
Language INtegrated Query (LINQ), but it does do a great job of interact-
ing with databases. It makes creating connections and manipulating data
relatively painless.

17 Chapter 1: Talking to Your Computer

 ✓ Developing user interfaces: Python isn’t like some languages like C#
where you have a built-in designer and can drag and drop items from
a toolbox onto the user interface. However, it does have an extensive
array of graphical user interface (GUI) frameworks — extensions that
make graphics a lot easier to create (see https://wiki.python.
org/moin/GuiProgramming for details). Some of these frameworks
do come with designers that make the user interface creation process
easier. The point is that Python isn’t devoted to just one method of
 creating a user interface — you can use the method that best suits
your needs.

Discovering which organizations
use Python
Python really is quite good at the tasks that it was designed to perform. In
fact, that’s why a lot of large organizations use Python to perform at least
some application-creation (development) tasks. You want a programming
language that has good support from these large organizations because these
organizations tend to spend money to make the language better. Here’s a list
of the large organizations that use Python the most:

 ✓ Alice Educational Software – Carnegie Mellon University (http://
www.cmu.edu/corporate/news/2007/features/alice.shtml):
Educational applications

 ✓ Fermilab (https://www.fnal.gov/): Scientific applications

 ✓ Go.com (http://go.com/): Browser-based applications

 ✓ Google (https://www.google.com/): Search engine

 ✓ Industrial Light & Magic (http://www.ilm.com/): Just about every
programming need

 ✓ Lawrence Livermore National Library (https://www.llnl.gov/):
Scientific applications

 ✓ National Space and Aeronautics Administration (NASA) (http://www.
nasa.gov/): Scientific applications

 ✓ New York Stock Exchange (https://nyse.nyx.com/): Browser-based
applications

 ✓ ObjectDomain (http://case-tools.org/tools/objectdomain.
html): Computer Aided Software Engineering (CASE) tools

 ✓ Redhat (http://www.redhat.com/): Linux installation tools

18 Part I: Getting Started with Python

 ✓ Yahoo! (https://www.yahoo.com/): Parts of Yahoo! mail

 ✓ YouTube (http://www.youtube.com/): Graphics engine

 ✓ Zope – Digital Creations (http://www.zope.com/): Publishing
application

 These are just a few of the many organizations that use Python extensively.
You can find a more complete list of organizations at http://www.python.
org/about/success/. The number of success stories has become so large
that even this list probably isn’t complete and the people supporting it have
had to create categories to better organize it.

Finding useful Python applications
You might have an application written in Python sitting on your machine
right now and not even know it. Python is used in a vast array of applica-
tions on the market today. The applications range from utilities that run at
the console to full-fledged CAD/CAM suites. Some applications run on mobile
devices, while others run on the large services employed by enterprises. In
short, there is no limit to what you can do with Python, but it really does help
to see what others have done. You can find a number of places online that list
applications written in Python, but the best place to look is https://wiki.
python.org/moin/Applications.

As a Python programmer, you’ll also want to know that Python development
tools are available to make your life easier. A development tool provides some
level of automation in writing the procedures needed to tell the computer
what to do. Having more development tools means that you have to perform
less work in order to obtain a working application. Developers love to share
their lists of favorite tools, but you can find a great list of tools broken into
categories at http://www.python.org/about/apps/.

 Of course, this chapter describes a number of tools as well, such as NumPy
and SciPy (two scientific libraries). The remainder of the book lists a few other
tools; make sure that you copy down your favorite tools for later.

Comparing Python to other languages
Comparing one language to another is somewhat dangerous because the
selection of a language is just as much a matter of taste and personal prefer-
ence as it is any sort of quantifiable scientific fact. So before I’m attacked
by the rabid protectors of the languages that follow, it’s important to realize

19 Chapter 1: Talking to Your Computer

that I also use a number of languages and find at least some level of overlap
among them all. There is no best language in the world, simply the language
that works best for a particular application. With this idea in mind, the follow-
ing sections provide an overview comparison of Python to other languages.
(You can find comparisons to other languages at https://wiki.python.
org/moin/LanguageComparisons.)

C#
A lot of people claim that Microsoft simply copied Java to create C#. That
said, C# does have some advantages (and disadvantages) when compared
to Java. The main (undisputed) intent behind C# is to create a better kind
of C/C++ language — one that is easier to learn and use. However, we’re
here to talk about C# and Python. When compared to C#, Python has these
advantages:

 ✓ Significantly easier to learn

 ✓ Smaller (more concise) code

 ✓ Supported fully as open source

 ✓ Better multiplatform support

 ✓ Easily allows use of multiple development environments

 ✓ Easier to extend using Java and C/C++

 ✓ Enhanced scientific and engineering support

Java
For years, programmers looked for a language that they could use to write
an application just once and have it run anywhere. Java is designed to work
well on any platform. It relies on some tricks that you’ll discover later in the
book to accomplish this magic. For now, all you really need to know is that
Java was so successful at running well everywhere that other languages have
sought to emulate it (with varying levels of success). Even so, Python has
some important advantages over Java, as shown in the following list:

 ✓ Significantly easier to learn

 ✓ Smaller (more concise) code

 ✓ Enhanced variables (storage boxes in computer memory) that can hold
different kinds of data based on the application’s needs while running
(dynamic typing)

 ✓ Faster development times

20 Part I: Getting Started with Python

Perl
PERL was originally an acronym for Practical Extraction and Report Language.
Today, people simply call it Perl and let it go at that. However, Perl still shows
its roots in that it excels at obtaining data from a database and presenting
it in report format. Of course, Perl has been extended to do a lot more than
that — you can use it to write all sorts of applications. (I’ve even used it for a
Web service application.) In a comparison with Python, you’ll find that Python
has these advantages over Perl:

 ✓ Simpler to learn

 ✓ Easier to read

 ✓ Enhanced protection for data

 ✓ Better Java integration

 ✓ Fewer platform-specific biases

Chapter 2

Getting Your Own Copy of Python
In This Chapter
▶ Obtaining a copy of Python for your system

▶ Performing the Python installation

▶ Finding and using Python on your system

▶ Ensuring your installation works as planned

C
reating applications requires that you have another application, unless
you really want to get low level and write applications in machine

code — a decidedly difficult experience that even true programmers avoid
if at all possible. If you want to write an application using the Python pro-
gramming language, you need the applications required to do so. These
applications help you work with Python by creating Python code, providing
help information as you need it, and letting you run the code you write. This
chapter helps you obtain a copy of the Python application, install it on your
hard drive, locate the installed applications so that you can use them, and
test your installation so that you can see how it works.

Downloading the Version You Need
Every platform (combination of computer hardware and operating system
software) has special rules that it follows when running applications. The
Python application hides these details from you. You type code that runs on
any platform that Python supports, and the Python applications translate
that code into something the platform can understand. However, in order for
the translation to take place, you must have a version of Python that works
on your particular platform. Python supports these platforms:

 ✓ Advanced IBM Unix (AIX)

 ✓ Amiga Research OS (AROS)

22 Part I: Getting Started with Python

 ✓ Application System 400 (AS/400)

 ✓ BeOS

 ✓ Hewlett-Packard Unix (HP-UX)

 ✓ Linux

 ✓ Mac OS X (comes pre-installed with the OS)

 ✓ Microsoft Disk Operating System (MS-DOS)

 ✓ MorphOS

 ✓ Operating System 2 (OS/2)

 ✓ Operating System 390 (OS/390) and z/OS

 ✓ PalmOS

 ✓ Playstation

 ✓ Psion

 ✓ QNX

 ✓ RISC OS (originally Acorn)

 ✓ Series 60

 ✓ Solaris

 ✓ Virtual Memory System (VMS)

 ✓ Windows 32-bit (XP and later)

 ✓ Windows 64-bit

 ✓ Windows CE/Pocket PC

 Wow, that’s a lot of different platforms! This book is tested with the Windows,
Mac OS X, and Linux platforms. However, the examples could very well work
with these other platforms, too, because the examples don’t rely on any
platform-specific code. Let me know if it works on your non-Windows, Mac,
or Linux platform at John@JohnMuellerBooks.com. The current version of
Python at the time of this writing is 3.3.4. I’ll talk about any Python updates
on my blog at http://blog.johnmuellerbooks.com. You can find the
answers to your Python book-specific questions there, too.

To get the right version for your platform, you need to go to http://www.
python.org/download/releases/3.3.4/. The download section is ini-
tially hidden from view, so you need to scroll halfway down the page. You see
a page similar to the one shown in Figure 2-1. The main part of the page con-
tains links for Windows, Mac OS X, and Linux downloads. These links provide

23 Chapter 2: Getting Your Own Copy of Python

you with the default setup that is used in this book. The platform-specific
links on the left side of the page show you alternative Python configurations
that you can use when the need arises. For example, you may want to use a
more advanced editor than the one provided with the default Python pack-
age, and these alternative configurations can provide one for you.

Figure 2-1:
The Python

download
page con­
tains links

for all sorts
of versions.

If you want to work with another platform, click the Other link on the left
side of the page. You see a list of Python installations for other platforms, as
shown in Figure 2-2. Many of these installations are maintained by volunteers
rather than by the people who create the versions of Python for Windows,
Mac OS X, and Linux. Make sure you contact these individuals when you have
installation questions because they know how best to help you get a good
installation on your platform.

24 Part I: Getting Started with Python

Figure 2-2:
Volunteers
have made

Python
available on

all sorts of
platforms.

Installing Python
After you download your copy of Python, it’s time to install it on your system.
The downloaded file contains everything needed to get you started:

 ✓ Python interpreter

 ✓ Help files (documentation)

 ✓ Command-line access

 ✓ Integrated DeveLopment Environment (IDLE) application

 ✓ Uninstaller (only on platforms that require it)

25 Chapter 2: Getting Your Own Copy of Python

This book assumes that you’re using one of the default Python setups found
at http://www.python.org/download/releases/3.3.4/. The follow-
ing sections describe how to install Python on the three platforms directly
supported by this book: Windows, Mac OS X, and Linux.

Working with Windows
The installation process on a Windows system follows the same procedure
that you use for other application types. The main difference is in finding the
file you downloaded so that you can begin the installation process. The fol-
lowing procedure should work fine on any Windows system, whether you use
the 32-bit or the 64-bit version of Python.

 1. Locate the downloaded copy of Python on your system.

 The name of this file varies, but normally it appears as python-3.3.4.msi
for 32-bit systems and python-3.3.4.amd64.msi for 64-bit systems. The
version number is embedded as part of the filename. In this case, the file-
name refers to version 3.3.4, which is the version used for this book.

 2. Double-click the installation file.

 (You may see an Open File – Security Warning dialog box that asks
whether you want to run this file. Click Run if you see this dialog box
pop up.) You see a Python Setup dialog box similar to the one shown
in Figure 2-3. The exact dialog box you see depends on which version
of the Python installation program you download.

Figure 2-3:
The setup

process
begins by

asking you
who should

have access
to Python.

26 Part I: Getting Started with Python

 3. Choose a user installation option (the book uses the default setting of
Install for All Users) and click Next.

 Install asks you to provide the name of an installation directory for
Python, as shown in Figure 2-4. Using the default destination will save
you time and effort later. However, you can install Python anywhere you
desire.

Figure 2-4:
Decide

on an
 installation
location for

your copy of
Python.

 Using the Windows \Program Files or \Program Files (x86)
folder is problematic for two reasons. First, the folder name has a space
in it, which makes it hard to access from within the application. Second,
the folder usually requires administrator access, so you’ll constantly
battle the User Account Control (UAC) feature of Windows if you install
Python in either folder.

 4. Type a destination folder name, if necessary, and click Next.

 Python asks you to customize its installation, as shown in Figure 2-5.

 Enabling the Add python.exe to Path option will save you time later. This
feature makes it possible to access Python from the Command Prompt
window. Don’t worry too much about how you use this feature just yet,
but it really is a good feature to have installed. The book assumes that
you’ve enabled this feature. Don’t worry about the other features you
see in Figure 2-5. They’re all enabled by default, which provides you with
maximum access to Python functionality.

27 Chapter 2: Getting Your Own Copy of Python

Figure 2-5:
Customize

your instal­
lation to

meet your
needs.

 5. (Optional) Click the down arrow next to the Add python.exe to Path
option and choose the Will Be Installed On Local Drive option.

 6. Click Next.

 You see the installation process start. At some point, you might see a
User Account Control dialog box asking whether you want to perform
the install. If you see this dialog box, click Yes. The installation continues
and you see an Installation Complete dialog box.

 7. Click Finish.

 Python is ready for use.

Working with the Mac
Your Mac system likely already has Python installed on it. However, this
installation is normally a few years old — or whatever the age of your system
happens to be. For the purposes of this book, the installation will likely work
fine. You won’t be testing the limits of Python programming technology — just
getting a great start using Python.

28 Part I: Getting Started with Python

 The Leopard version of OS X (10.5) uses a really old version of Python 2.5.1.
This particular version lacks direct access to the IDLE application. As a result,
you may find that some book exercises won’t work properly. The article at
https://wiki.python.org/moin/MacPython/Leopard tells you more
about how to overcome this particular issue. The newest version of OS X at
the time of this writing (Mavericks, or 10.9) comes with Python 2.7, which is
just fine for working through the examples in the book.

Depending on how you use Python, you might want to update your installa-
tion at some point. Part of this process involves installing the GNU Compiler
Collection (GCC) tools so that Python has access to the low-level resources
it needs. The following steps get you started with installing a new version of
Python on your Mac OS X system.

 1. Navigate to http://www.python.org/download/releases/3.3.4/
with your browser.

 You see information regarding the latest version of Python, as shown in
Figure 2-1.

 2. Click the appropriate link for your version of OS X:

 a. Python 3.3.4 Mac OS X 64-bit/32-bit x86-64/i386 Installer for 32-bit
or 64-bit versions on the Intel processor

 b. Python 3.3.4 Mac OS X 32-bit i386/PPC Installer for 32-bit versions
on the Power PC processor

 The Python disk image begins downloading. Be patient: The disk image
requires several minutes to download. Most browsers provide a method
for monitoring the download process so that you can easily see how
long the download will take. When the download is complete, your Mac
automatically opens the disk image for you.

 The disk image actually looks like a folder. Inside this folder, you see a
number of files, including python.mpkg. The python.mpkg file is the
one that contains the Python application. The text files contain informa-
tion about the build, licensing, and any late-breaking notes.

 3. Double-click python.mpkg.

 You see a Welcome dialog box that tells you about this particular Python
build.

 4. Click Continue three times.

 The installation program displays late-breaking notes about Python,
licensing information (click Agree when asked about the licensing
information), and, finally, a destination dialog box.

29 Chapter 2: Getting Your Own Copy of Python

 5. Select the Volume (hard drive or other media) that you want to use for
installing Python and click Continue.

 The Installation Type dialog box appears. This dialog box performs
two tasks:

	 •	Click	Customize	to	change	the	feature	set	that	is	installed	on	your	
system.

	 •	Click	Change	Install	Location	to	modify	the	place	where	the	
installer places Python.

 The book assumes that you’re performing a standard installation and
that you haven’t changed the installation location. However, these
options are available in case you want to use them.

 6. Click Install.

 The installer may request your administrator password. Type the admin-
istrator name and password, if required, into the dialog box and click OK.
You see an Installing Python dialog box. The contents of this dialog box
will change as the installation process proceeds so that you know what
part of Python the installer is working with.

 After the installation is completed, you see an Install Succeeded dialog box.

 7. Click Close.

 Python is ready to use. (You can close the disk image at this point and
remove it from your system.)

Working with Linux
Some versions of Linux come with Python installed. For example, if you have
a Red Hat Package Manager (RPM)-based distribution (such as SUSE, Red
Hat, Yellow Dog, Fedora Core, and CentOS), you likely already have Python on
your system and don’t need to do anything else.

 Depending on which version of Linux you use, the version of Python varies
and some systems don’t include the Interactive DeveLopment Environment
(IDLE) application. If you have an older version of Python (2.5.1 or earlier),
you might want to install a newer version so that you have access to IDLE.
Many of the book exercises require use of IDLE.

You actually have two techniques to use to install Python on Linux. The
 following sections discuss both techniques. The first technique works on
any Linux distribution; the second technique has special criteria that you
must meet.

30 Part I: Getting Started with Python

Using the standard Linux installation
The standard Linux installation works on any system. However, it requires
you to work at the Terminal and type commands to complete it. Some of the
actual commands may vary by version of Linux. The information at http://
docs.python.org/3/install/ provides some helpful tips that you can
use in addition to the procedure that follows.

 1. Navigate to http://www.python.org/download/releases/3.3.4/
with your browser.

 You see information regarding the latest version of Python, as shown in
Figure 2-1.

 2. Click the appropriate link for your version of Linux:

 a. Python 3.3.4 compressed source tarball (any version of Linux)

 b. Python 3.3.4 xzipped source tarball (better compression and faster
download)

 3. When asked whether you want to open or save the file, choose Save.

 The Python source files begin downloading. Be patient: The source files
require a minute or two to download.

 4. Double-click the downloaded file.

 The Archive Manager window opens. After the files are extracted, you
see the Python 3.3.4 folder in the Archive Manager window.

 5. Double-click the Python 3.3.4 folder.

 The Archive Manager extracts the files to the Python 3.3.4 subfolder
of your home folder.

 6. Open a copy of Terminal.

 The Terminal window appears. If you have never built any software on
your system before, you must install the build essentials, SQLite, and bzip2
or the Python installation will fail. Otherwise, you can skip to Step 10 to
begin working with Python immediately.

 7. Type sudo apt-get install build-essential and press Enter.

 Linux installs the Build Essential support required to build packages
(see https://packages.debian.org/squeeze/build-essential
for details).

 8. Type sudo apt-get install libsqlite3-dev and press Enter.

 Linux installs the SQLite support required by Python for database
manipulation (see https://packages.debian.org/squeeze/
libsqlite3-dev for details).

31 Chapter 2: Getting Your Own Copy of Python

 9. Type sudo apt-get install libbz2-dev and press Enter.

 Linux installs the bzip2 support required by Python for archive manipu-
lation (see https://packages.debian.org/sid/libbz2-dev for
details).

 10. Type CD Python 3.3.4 in the Terminal window and press Enter.

 Terminal changes directories to the Python 3.3.4 folder on your system.

 11. Type ./configure and press Enter.

 The script begins by checking the system build type and then performs
a series of tasks based on the system you’re using. This process can
require a minute or two because there is a large list of items to check.

 12. Type make and press Enter.

 Linux executes the make script to create the Python application software.
The make process can require up to a minute — it depends on the pro-
cessing speed of your system.

 13. Type sudo make altinstall and press Enter.

 The system may ask you for your administrator password. Type your
password and press Enter. At this point, a number of tasks take place as
the system installs Python on your system.

Using the graphical Linux installation
All versions of Linux support the standard installation discussed in the
“Using the standard Linux installation” section of this chapter. However,
a few versions of Debian-based Linux distributions, such as Ubuntu 12.x
and later, provide a graphical installation technique as well. You need the
administrator group (sudo) password to use this procedure, so having it
handy will save you time. The following steps outline the graphical instal-
lation technique for Ubuntu, but the technique is similar for other Linux
installations:

 1. Open the Ubuntu Software Center folder. (The folder may be
named Synaptics on other platforms.)

 You see a listing of the most popular software available for download
and installation.

 2. Select Developer Tools (or Development) from the All Software drop-
down list box.

 You see a listing of developer tools, including Python.

 3. Double-click the Python 3.3.4 entry.

 The Ubuntu Software Center provides details about the Python 3.3.4
entry and offers to install it for you.

32 Part I: Getting Started with Python

 4. Click Install.

 Ubuntu begins the process of installing Python. A progress bar shows
the download and installation status. When the installation is complete,
the Install button changes to a Remove button.

 5. Close the Ubuntu Software Center folder.

 You see a Python icon added to the desktop. Python is ready for use.

Accessing Python on Your Machine
After you have Python installed on your system, you need to know where to
find it. In some respects, Python does everything it can to make this process
easy by performing certain tasks, such as adding the Python path to the
machine’s path information during installation. Even so, you need to know
how to access the installation, which the following sections describe.

Using Windows
A Windows installation creates a new folder in the Start menu that contains
your Python installation. You can access it by choosing Start➪All Programs➪
Python 3.3. The two items of interest in the folder when creating new applica-
tions are IDLE (Python GUI) and Python (command line).

A word about the screenshots
As you work your way through the book, you’ll
use either IDLE or the Python command­line shell
to work with Python. The name of the graphical
(GUI) environment, IDLE, is precisely the same
across all three platforms, and you won’t even
see any significant difference in the presenta­
tion. The differences you do see are minor, and
you should ignore them as you work through the
book. With this in mind, the book does rely heav­
ily on Windows screenshots — all the screen­
shots you see were obtained from a Windows
system for the sake of consistency.

The command­line shell also works pre­
cisely the same across all three platforms.
The presentation may vary a little more than
IDLE does simply because the shell used
for each platform varies slightly. However,
the commands you type for one platform are
precisely the same on another platform. The
output is the same as well. When viewing the
screenshot, look at the content rather than
for specific differences in the presentation of
the shell.

33 Chapter 2: Getting Your Own Copy of Python

Clicking IDLE (Python GUI) produces a graphical interactive environment
like the one shown in Figure 2-6. When you open this environment, IDLE
automatically displays some information so that you know you have the
right application open. For example, you see the Python version number
(which is 3.3.4 in this case). It also tells you what sort of system you’re
using to run Python.

Figure 2-6:
Use IDLE

when you
want the

comforts of
a graphical

environment.

The Python (command line) option opens a command prompt and executes
the Python command, as shown in Figure 2-7. Again, the environment auto-
matically displays information such as the Python version and the host
platform.

Figure 2-7:
Use the

command
prompt

when you
want the

speed and
flexibility of

a command­
line

interface.

34 Part I: Getting Started with Python

A third method to access Python is to open a command prompt, type Python,
and press Enter. You can use this approach when you want to gain additional
flexibility over the Python environment, automatically load items, or execute
Python in a higher-privilege environment (in which you gain additional secu-
rity rights). Python provides a significant array of command-line options that
you can see by typing Python /? at the command prompt and pressing Enter.
Figure 2-8 shows what you typically see. Don’t worry too much about these
command-line options — you won’t need them for this book, but it’s helpful
to know they exist.

Figure 2-8:
Using a

standard
command
line offers

the flexibility
of using

switches to
change the
way Python

works.

 To use this third method of executing Python, you must include Python
in the Windows path. This is why you want to choose the Add python.exe
to Path option when installing Python on Windows. If you didn’t add the
path during installation, you can add it afterward using the instructions
found in the Adding a Location to the Windows Path article on my blog

35 Chapter 2: Getting Your Own Copy of Python

at http://blog.johnmuellerbooks.com/2014/02/17/adding-a-
location-to-the-windows-path/. This same technique works for
adding Python-specific environment variables such as

 ✓ PYTHONSTARTUP

 ✓ PYTHONPATH

 ✓ PYTHONHOME

 ✓ PYTHONCASEOK

 ✓ PYTHONIOENCODING

 ✓ PYTHONFAULTHANDLER

 ✓ PYTHONHASHSEED

None of these environment variables is used in the book. However, you can
find out more about them at http://docs.python.org/3.3/using/
cmdline.html#environment-variables.

Using the Mac
When working with a Mac, you probably have Python already installed and
don’t need to install it for this book. However, you still need to know where to
find Python. The following sections tell you how to access Python depending
on the kind of installation you performed.

Locating the default installation
The default OS X installation doesn’t include a Python-specific folder in most
cases. Instead, you must open Terminal by choosing Applications➪Utilities➪
Terminal. After Terminal is open, you can type Python and press Enter to
access the command-line version of Python. The display you see is similar to
the one shown in Figure 2-7. As with Windows (see the “Using Windows” sec-
tion of the chapter), using Terminal to open Python offers the advantage of
using command-line switches to modify the manner in which Python works.

Locating the updated version of Python you installed
After you perform the installation on your Mac system, open the Applica-
tions folder. Within this folder, you find a Python 3.3 folder that contains
the following:

 ✓ Extras folder

 ✓ IDLE application (GUI development)

 ✓ Python Launcher (interactive command development)

 ✓ Update Sh... command

36 Part I: Getting Started with Python

Double-clicking IDLE application opens a graphical interactive environment
that looks similar to the environment shown in Figure 2-6. There are some
small cosmetic differences, but the content of the window is the same. Double-
clicking Python Launcher opens a command-line environment similar to the
one shown in Figure 2-7. This environment uses all the Python defaults to pro-
vide a standard execution environment.

 Even if you install a new version of Python on your Mac, you don’t have to
settle for using the default environment. It’s still possible to open Terminal to
gain access to the Python command-line switches. However, when you access
Python from the Mac Terminal application, you need to ensure that you’re
not accessing the default installation. Make sure to add /usr/local/bin/
Python3.3 to your shell search path.

Using Linux
After the installation process is complete, you can find a Python 3.3 sub-
folder in your home folder. The physical location of Python 3.3 on your Linux
system is normally the /usr/local/bin/Python3.3 folder. This is impor-
tant information because you may need to modify the path for your system
manually. Linux developers need to type Python3.3, rather than just Python,
when working at the Terminal window to obtain access to the Python 3.3.4
installation.

Testing Your Installation
To ensure that you have a usable installation, you need to test it. It’s impor-
tant to know that your installation will work as expected when you need it. Of
course, this means writing your first Python application. To get started, open
a copy of IDLE. As previously mentioned, IDLE automatically displays the
Python version and host information when you open it (refer to Figure 2-6).

To see Python work, type print(“This is my first Python program.”) and
press Enter. Python displays the message you just typed, as shown in
Figure 2-9. The print() command displays onscreen whatever you tell it to
display. You see the print() command used quite often in this book to dis-
play the results of tasks you ask Python to perform, so this is one of the com-
mands you work with frequently.

37 Chapter 2: Getting Your Own Copy of Python

Figure 2-9:
The

print()
command

displays
whatever

information
you tell it

to print.

Notice that IDLE color codes the various entries for you so that they’re easier
to see and understand. The colors codes are your indicator that you’ve done
something right. Four color codes are shown in Figure 2-9 (although they’re
not visible in the print edition of the book):

 ✓ Purple: Indicates that you have typed a command

 ✓ Green: Specifies the content sent to a command

 ✓ Blue: Shows the output from a command

 ✓ Black: Defines non-command entries

You know that Python works now because you were able to issue a command
to it, and it responded by reacting to that command. It might be interesting
to see one more command. Type 3 + 4 and press Enter. Python responds
by outputting 7, as shown in Figure 2-10. Notice that 3 + 4 appears in black
type because it isn’t a command. However, the 7 is still in blue type because
it’s output.

Figure 2-10:
Python sup­

ports math
directly as
part of the
interactive

environment.

38 Part I: Getting Started with Python

It’s time to end your IDLE session. Type quit() and press Enter. IDLE may
display a message such as the one shown in Figure 2-11. Well, you never
intended to kill anything, but you will now. Click OK, and the session dies.

Figure 2-11:
IDLE seems

to get a little
 dramatic

about
ending a
session!

Notice that the quit() command has parentheses after it, just as the
print() command does. All commands have parentheses like these two.
That’s how you know they’re commands. However, you don’t need to tell the
quit() command anything, so you simply leave the area between the paren-
theses blank.

Chapter 3

Interacting with Python
In This Chapter
▶ Accessing the command line

▶ Using commands to perform tasks

▶ Obtaining help about Python

▶ Ending a command-line session

U
ltimately, any application you create interacts with the computer and
the data it contains. The focus is on data because without data, there

isn’t a good reason to have an application. Any application you use (even one
as simple as Solitaire) manipulates data in some way. In fact, the acronym
CRUD sums up what most applications do:

 ✓ Create

 ✓ Read

 ✓ Update

 ✓ Delete

If you remember CRUD, you’ll be able to summarize what most applications
do with the data your computer contains (and some applications really are
quite cruddy). However, before your application accesses the computer, you
have to interact with a programming language that creates a list of tasks to
perform in a language the computer understands. That’s the purpose of this
chapter. You begin interacting with Python. Python takes the list of steps you
want to perform on the computer’s data and changes those steps into bits
the computer understands.

40 Part I: Getting Started with Python

Opening the Command Line
Python offers a number of ways to interact with the underlying language. For
example, you worked a bit with the Integrated DeveLopment Environment
(IDLE) in Chapter 2. IDLE makes it easy to develop full-fledged applications.
However, sometimes you simply want to experiment or to run an existing
application. Often, using the command-line version of Python works better
in these cases because it offers better control over the Python environment
through command-line switches, uses fewer resources, and relies on a mini-
malistic interface so that you can focus on trying out code rather than play-
ing with a GUI.

Understanding the importance of the README file
Many applications include a README file. The
README file usually provides updated informa­
tion that didn’t make it into the documentation
before the application was put into a produc­
tion status. Unfortunately, most people ignore
the README file and some don’t even know it
exists. As a result, people who should know
something interesting about their shiny new
product never find out. Python has a README.
txt file in the \Python33 directory. When
you open this file, you find all sorts of really
interesting information:

 ✓ How to build a copy of Python for Linux
systems

 ✓ Where to find out about new features in this
version of Python

 ✓ Where to find the latest version of the
Python documentation

 ✓ How to convert your older Python applica­
tions to work with Python 3.3.x

 ✓ What you need to do to test custom Python
modifications

 ✓ How to install multiple versions of Python
on the same system

 ✓ How to access bug and issue tracking for
Python

 ✓ How to request updates to Python

 ✓ How to find out when the next version of
Python will come out

Opening and reading the README file will help
you become a Python genius. People will be
amazed that you really do know something
interesting about Python and will ask you all
sorts of questions (deferring to your wisdom).
Of course, you could always just sit there,
thinking that the README is just too much
effort to read.

41 Chapter 3: Interacting with Python

Starting Python
Depending on your platform, you might have multiple ways to start the com-
mand line. Here are the methods that are commonly available:

 ✓ Select the Python (command-line) option found in the Python 3.3 folder.
This option starts a command-line session that uses the default settings.

 ✓ Open a command prompt or terminal, type Python, and press Enter. Use
this option when you want greater flexibility in configuring the Python
environment using command-line switches.

 ✓ Locate the Python folder, such as C:\Python33 in Windows, and open
the Python.exe file directly. This option also opens a command-line
session that uses the default settings, but you can do things like open
it with increased privileges (for applications that require access to
secured resources) or modify the executable file properties (to add
command-line switches).

No matter how you start Python at the command line, you eventually end up
with a prompt similar to the one shown in Figure 3-1. (Your screen may look
slightly different from the one shown in Figure 3-1 if you rely on a platform
other than Windows, you’re using IDLE instead of the command-line version
of Python, your system is configured differently from mine, or you have a dif-
ferent version of Python.) This prompt tells you the Python version, the host
operating system, and how to obtain additional information.

Figure 3-1:
The Python

command
prompt

tells you a
bit about

the Python
environment.

42 Part I: Getting Started with Python

Using the command line
to your advantage
This section will seem a little complicated at first, and you won’t normally
need this information when using the book. However, it’s still good informa-
tion, and you’ll eventually need it. For now, you can browse the information
so that you know what’s available and then come back to it later when you
really do need the information.

To start Python at a command prompt, type Python and press Enter. However,
that’s not all you can do. You can also provide some additional information to
change how Python works:

 ✓ Options: An option, or command-line switch, begins with a minus sign
followed by one or more letters. For example, if you want to obtain help
about Python, you type Python –h and press Enter. You see additional
information about how to work with Python at the command line. The
options are described later in this section.

 ✓ Filename: Providing a filename as input tells Python to load that file and
run it. You can run any of the example applications from the download-
able code by providing the name of the file containing the example as
input. For example, say that you have an example named SayHello.py.
To run this example, you type Python SayHello.py and press Enter.

 ✓ Arguments: An application can accept additional information as input to
control how it runs. This additional information is called an argument.
Don’t worry too much about arguments right now — they appear later in
the book.

 Most of the options won’t make sense right now. They’re here so that you can
find them later when you need them (this is the most logical place to include
them in the book). Reading through them will help you gain an understanding
of what’s available, but you can also skip this material until you need it later.

 Python uses case-sensitive options. For example, -s is a completely different
option from -S. The Python options are

 ✓ -b: Add warnings to the output when your application uses certain
Python features that include: str(bytes_instance), str(bytearray_
instance), and comparing bytes or bytearray with str().

 ✓ -bb: Add errors to the output when your application uses certain Python
features that include: str(bytes_instance), str(bytearray_
instance), and comparing bytes or bytearray with str().

 ✓ -B: Don’t write .py or .pyco files when performing a module import.

43 Chapter 3: Interacting with Python

 ✓ -c cmd: Use the information provided by cmd to start a program. This
option also tells Python to stop processing the rest of the information as
options (it’s treated as part of the command).

 ✓ -d: Start the debugger (used to locate errors in your application).

 ✓ -E: Ignore all the Python environment variables, such as PYTHONPATH,
that are used to configure Python for use.

 ✓ -h: Display help about the options and basic environment variables
onscreen. Python always exits after it performs this task without doing
anything else so that you can see the help information.

 ✓ -i: Force Python to let you inspect the code interactively after running
a script. It forces a prompt even if stdin (the standard input device)
doesn’t appear to be a terminal.

 ✓ -m mod: Run the library module specified by mod as a script. This
option also tells Python to stop processing the rest of the informa-
tion as options (the rest of the information is treated as part of the
command).

 ✓ -O: Optimize the generated bytecode slightly (makes it run faster).

 ✓ -OO: Perform additional optimization by removing doc-strings.

 ✓ -q: Tell Python not to print the version and copyright messages on inter-
active startup.

 ✓ -s: Force Python not to add the user site directory to sys.path (a vari-
able that tells Python where to find modules).

 ✓ -S: Don’t run 'import site' on initialization. Using this option means
that Python won’t look for paths that may contain modules it needs.

 ✓ -u: Allow unbuffered binary input for the stdout (standard output) and
stderr (standard error) devices. The stdin device is always buffered.

 ✓ -v: Place Python in verbose mode so that you can see all the import
statements. Using this option multiple times increases the level of
verbosity.

 ✓ -V: Display the Python version number and exit.

 ✓ --version: Display the Python version number and exit.

 ✓ -W arg: Modify the warning level so that Python displays more or fewer
warnings. The valid arg values are

 •	action

 •	message

 •	category

 •	module

 •	lineno

44 Part I: Getting Started with Python

 ✓ -x: Skip the first line of a source code file, which allows the use of non-
Unix forms of #!cmd.

 ✓ -X opt: Set an implementation-specific option. (The documentation for
your version of Python discusses these options, if there are any.)

Using Python environment variables
to your advantage
Environment variables are special settings that are part of the command line
or terminal environment for your operating system. They serve to configure
Python in a consistent manner. Environment variables perform many of the
same tasks as do the options that you supply when you start Python, but you
can make environment variables permanent so that you can configure Python
the same way every time you start it without having to manually supply
the option.

 As with options, most of these environment variables won’t make any sense
right now. You can read through them to see what is available. You find some
of the environment variables used later in the book. Feel free to skip the rest
of this section and come back to it later when you need it.

Most operating systems provide the means to set environment variables tempo-
rarily, by configuring them during a particular session, or permanently, by con-
figuring them as part of the operating system setup. Precisely how you perform
this task depends on the operating system. For example, when working with
Windows, you can use the Set command (see my blog post at http://blog.
johnmuellerbooks.com/2014/02/24/using-the-set-command-to-
your-advantage/ for details) or rely on a special Windows configuration fea-
ture (see my post at http://blog.johnmuellerbooks.com/2014/02/17/
adding-a-location-to-the-windows-path/ for setting the Path environ-
ment variable as an example).

 Using environment variables makes sense when you need to configure Python
the same way on a regular basis. The following list describes the Python envi-
ronment variables:

 ✓ PYTHONCASEOK=x: Forces Python to ignore case when parsing import
statements. This is a Windows-only environment variable.

 ✓ PYTHONDEBUG=x: Performs the same task as the -d option.

 ✓ PYTHONDONTWRITEBYTECODE=x: Performs the same task as the -B
option.

45 Chapter 3: Interacting with Python

 ✓ PYTHONFAULTHANDLER=x: Forces Python to dump the Python traceback
(list of calls that led to an error) on fatal errors.

 ✓ PYTHONHASHSEED=arg: Determines the seed value used to generate
hash values from various kinds of data. When this variable is set to
random, Python uses a random value to seed the hashes of str, bytes,
and datetime objects. The valid integer range is 0 to 4294967295.
Use a specific seed value to obtain predictable hash values for testing
purposes.

 ✓ PYTHONHOME=arg: Defines the default search path that Python uses to
look for modules.

 ✓ PYTHONINSPECT=x: Performs the same task as the -i option.

 ✓ PYTHONIOENCODING=arg: Specifies the encoding[:errors] (such as
utf-8) used for the stdin, stdout, and stderr devices.

 ✓ PYTHONNOUSERSITE: Performs the same task as the -s option.

 ✓ PYTHONOPTIMIZE=x: Performs the same task as the -O option.

 ✓ PYTHONPATH=arg: Provides a semicolon (;) separated list of directories
to search for modules. This value is stored in the sys.path variable in
Python.

 ✓ PYTHONSTARTUP=arg: Defines the name of a file to execute when
Python starts. There is no default value for this environment variable.

 ✓ PYTHONUNBUFFERED=x: Performs the same task as the -u option.

 ✓ PYTHONVERBOSE=x: Performs the same task as the -v option.

 ✓ PYTHONWARNINGS=arg: Performs the same task as the -W option.

Typing a Command
After you start the command-line version of Python, you can begin typing
commands. Using commands makes it possible to perform tasks, test ideas
that you have for writing your application, and discover more about Python.
Using the command line lets you gain hands-on experience with how Python
actually works — details that could be hidden by an Interactive Development
Environment (IDE) such as IDLE. The following sections get you started using
the command line.

46 Part I: Getting Started with Python

Telling the computer what to do
Python, like every other programming language in existence, relies on com-
mands. A command is simply a step in a procedure. In Chapter 1, you saw
how “Get the bread and butter from the refrigerator” is a step in a procedure
for making toast. When working with Python, a command, such as print(),
is simply the same thing: a step in a procedure.

To tell the computer what to do, you issue one or more commands that
Python understands. Python translates these commands into instructions
that the computer understands, and then you see the result. A command
such as print() can display the results onscreen so that you get an instant
result. However, Python supports all sorts of commands, many of which don’t
display any results onscreen but still do something important.

As the book progresses, you use commands to perform all sorts of tasks.
Each of these tasks will help you accomplish a goal, just as the steps in a pro-
cedure do. When it seems as if all the Python commands become far too com-
plex, simply remember to look at them as steps in a procedure. Even human
procedures become complex at times, but if you take them one step at a time,
you begin to see how they work. Python commands are the same way. Don’t
get overwhelmed by them; instead, look at them one at a time and focus on
just that step in your procedure.

Telling the computer you’re done
At some point, the procedure you create ends. When you make toast, the
procedure ends when you finish buttering the toast. Computer procedures
work precisely the same way. They have a starting and an ending point. When
typing commands, the ending point for a particular step is the Enter key.
You press Enter to tell the computer that you’re done typing the command.
As the book progresses, you find that Python provides a number of ways to
signify that a step, group of steps, or even an entire application is complete.
No matter how the task is accomplished, computer programs always have a
distinct starting and stopping point.

Seeing the result
You now know that a command is a step in a procedure and that each
command has a distinct starting and ending point. In addition, groups of
commands and entire applications also have a distinct starting and ending

47 Chapter 3: Interacting with Python

point. So, take a look at how this works. The following procedure helps you
see the result of using a command:

 1. Start a copy of the Python command-line version.

 You see a command prompt where you can type commands, as shown in
Figure 3-1.

 2. Type print(“This is a line of text.”) at the command line.

 Notice that nothing happens. Yes, you typed a command, but you haven’t
signified that the command is complete.

 3. Press Enter.

 The command is complete, so you see a result like the one shown in
Figure 3-2.

Figure 3-2:
Issuing

commands
tells Python

what to
tell the

 computer
to do.

This exercise shows you how things work within Python. Each command
that you type performs some task, but only after you tell Python that the
command is complete in some way. The print() command displays data
onscreen. In this case, you supplied text to display. Notice that the output
shown in Figure 3-2 comes immediately after the command because this is
an interactive environment — one in which you see the result of any given
command immediately after Python performs it. Later, as you start creating
applications, you notice that sometimes a result doesn’t appear immediately
because the application environment delays it. Even so, the command is
executed by Python immediately after the application tells Python that the
command is complete.

48 Part I: Getting Started with Python

Using Help
Python is a computer language, not a human language. As a result, you won’t
speak it fluently at first. If you think about it for a moment, it makes sense
that you won’t speak Python fluently (and as with most human languages,
you won’t know every command even after you do become fluent). Having
to discover Python commands a little at a time is the same thing that hap-
pens when you learn to speak another human language. If you normally
speak English and try to say something in German, you find that you must
have some sort of guide to help you along. Otherwise, anything you say is
gibberish and people will look at you quite oddly. Even if you manage to say
something that makes sense, it may not be what you want. You might go to
a restaurant and order hot hubcaps for dinner when what you really wanted
was a steak.

Likewise, when you try to speak Python, you need a guide to help you. Fortu-
nately, Python is quite accommodating and provides immediate help to keep
you from ordering something you really don’t want. The help provided inside
Python works at two levels:

 ✓ Help mode, in which you can browse the available commands

 ✓ Direct help, in which you ask about a specific command

There isn’t a correct way to use help — just the method that works best for
you at a particular time. The following sections describe how to obtain help.

Getting into help mode
When you first start Python, you see a display similar to the one shown in
Figure 3-1. Notice that Python provides you with four commands at the outset
(which is actually your first piece of help information):

 ✓ help

 ✓ copyright

 ✓ credits

 ✓ license

All four commands provide you with help, of a sort, about Python. For exam-
ple, the copyright() command tells you about who holds the right to copy,
license, or otherwise distribute Python. The credits() command tells you

49 Chapter 3: Interacting with Python

who put Python together. The license() command describes the usage
agreement between you and the copyright holder. However, the command
you most want to know about is simply help().

To enter help mode, type help() and press Enter. Notice that you must
include the parentheses after the command even though they don’t appear
in the help text. Every Python command has parentheses associated with it.
After you enter this command, Python goes into help mode and you see a dis-
play similar to the one shown in Figure 3-3.

Figure 3-3:
You ask
Python

about other
commands

in help
mode.

 You can always tell that you’re in help mode by the help> prompt that you
see in the Python window. As long as you see the help> prompt, you know
that you’re in help mode.

Asking for help
To obtain help, you need to know what question to ask. The initial help mes-
sage that you see when you go into help mode (refer to Figure 3-3) provides
some helpful tips about the kinds of questions you can ask. If you want to
explore Python, the three basic topics are

 ✓ modules

 ✓ keywords

 ✓ topics

50 Part I: Getting Started with Python

The first two topics won’t tell you much for now. You won’t need the modules
topic until Chapter 10. The keywords topic will begin proving useful in
Chapter 4. However, the topics keyword is already useful because it helps
you understand where to begin your Python adventure. To see what topics
are available, type topics and press Enter. You see a list of topics similar to
those shown in Figure 3-4.

Figure 3-4:
The

topics
help topic

provides
you with

a starting
point for

your Python
adventure.

 When you see a topic that you like, such as FUNCTIONS, simply type that
topic and press Enter. To see how this works, type FUNCTIONS and press
Enter (you must type the word in uppercase — don’t worry, Python won’t
think you’re shouting). You see help information similar to that shown in
Figure 3-5.

Figure 3-5:
You must

use
 uppercase

when
 requesting

topic
information.

51 Chapter 3: Interacting with Python

As you work through examples in the book, you use commands that look
interesting, and you might want more information about them. For example,
in the “Seeing the result” section of this chapter, you use the print() com-
mand. To see more information about the print() command, type print and
press Enter (notice that you don’t include the parentheses this time because
you’re requesting help about print(), not actually using the command).
Figure 3-6 shows typical help information for the print() command.

Figure 3-6:
Request

com­
mand help

 information
by typing the

 command
using

 whatever
case it

 actually
uses.

 Unfortunately, reading the help information probably doesn’t help much yet
because you need to know more about Python. However, you can ask for more
information. For example, you might wonder what sys.stdout means — and
the help topic certainly doesn’t tell you anything about it. Type sys.stdout and
press Enter. You see the help information shown in Figure 3-7.

Figure 3-7:
You can ask

for help on
the help you

receive.

52 Part I: Getting Started with Python

You may still not find the information as helpful as you need, but at least you
know a little more. In this case, help has a lot to say and it can’t all fit on one
screen. Notice the following entry at the bottom of the screen:

-- More --

To see the additional information, press the spacebar. The next page of help
appears. As you read to the bottom of each page of help, you can press the
spacebar to see the next page. The pages don’t go away — you can scroll up
to see previous material.

Leaving help mode
At some point, you need to leave help mode to perform useful work. All you
have to do is press Enter without typing anything. When you press Enter, you
see a message about leaving help, and then the prompt changes to the stan-
dard Python prompt, as shown in Figure 3-8.

Figure 3-8:
Exit help
mode by
pressing

Enter with­
out typing
anything.

Obtaining help directly
Entering help mode isn’t necessary unless you want to browse, which is
always a good idea, or unless you don’t actually know what you need to find.
If you have a good idea of what you need, all you need to do is ask for help
directly (a really nice thing for Python to do). So, instead of fiddling with
help mode, you simply type the word help, followed by a left parenthesis and

53 Chapter 3: Interacting with Python

single quote, whatever you want to find, another single quote, and the right
parenthesis. For example, if you want to know more about the print() com-
mand, you type help('print') and press Enter. Figure 3-9 shows typical output
when you access help this way.

Figure 3-9:
Python

makes it
possible to
obtain help
whenever
you need
it without

leaving
the Python

prompt.

You can browse at the Python prompt, too. For example, when you type
help('topics') and press Enter, you see a list of topics like the one that
appears in Figure 3-10. You can compare this list with the one shown in
Figure 3-4. The two lists are identical, even though you typed one while in
help mode and the other while at the Python prompt.

Figure 3-10:
It’s possible

to browse at
the Python

prompt if
you really

want to.

54 Part I: Getting Started with Python

 You might wonder why Python has a help mode at all if you can get the same
results at the Python prompt. The answer is convenience. It’s easier to browse
in the help mode. In addition, even though you don’t do a lot of extra typing
at the prompt, you do perform less typing while in help mode. Help mode also
provides additional helps, such as by listing commands that you can type, as
shown in Figure 3-3. So you have all kinds of good reasons to enter help mode
when you plan to ask Python a lot of help questions.

 No matter where you ask for help, you need to observe the correct capitaliza-
tion of help topics. For example, if you want general information about func-
tions, you must type help('FUNCTIONS') and not help('Functions') or
help('functions'). When you use the wrong capitalization, Python will tell
you that it doesn’t know what you mean or that it couldn’t find the help topic.
It won’t know to tell you that you used the wrong capitalization. Someday
computers will know what you meant to type, rather than what you did type,
but that hasn’t happened yet.

Closing the Command Line
Eventually, you want to leave Python. Yes, it’s hard to believe, but people
have other things to do besides playing with Python all day long. You have
two standard methods for leaving Python and a whole bunch of nonstandard
methods. Generally, you want to use one of the standard methods to ensure
that Python behaves as you expect it to, but the nonstandard methods work
just fine when you simply want to play around with Python and not perform
any productive work. The two standard methods are

 ✓ quit()

 ✓ exit()

Either of these methods will close the interactive version of Python. The shell
(the Python program) is designed to allow either command.

Both of these commands can accept an optional argument. For example,
you can type quit(5) or exit(5) and press Enter to exit the shell. The numeric
argument sets the command prompt’s ERRORLEVEL environment variable,
which you can then intercept at the command line or as part of a batch file.
Standard practice is to simply use quit() or exit() when nothing has gone
wrong with the application. To see this way of exiting at work, you must

 1. Open a command prompt or terminal.

 You see a prompt.

 2. Type Python and press Enter to start Python.

 You see the Python prompt.

55 Chapter 3: Interacting with Python

 3. Type quit(5) and press Enter.

 You see the prompt again.

 4. Type echo %ERRORLEVEL% and press Enter.

 You see the error code, as shown in Figure 3-11. When working with plat-
forms other than Windows, you may need to type something other than
echo %ERRORLEVEL%. For example, when working with a bash script,
you type echo $ instead.

Figure 3-11:
Add an error

code when
needed to
tell others

the Python
exit status.

One of the most common nonstandard exit methods is to simply click the
command prompt’s or terminal’s Close button. Using this approach means
that your application may not have time to perform any required cleanup,
which can result in odd behaviors. It’s always better to close Python using an
expected approach if you’ve been doing anything more than simply browsing.

 You also have access to a number of other commands for closing the command
prompt when needed. In most cases, you won’t need these special commands,
so you can skip the rest of this section if desired.

When you use quit() or exit(), Python performs a number of tasks to
ensure that everything is neat and tidy before the session ends. If you sus-
pect that a session might not end properly anyway, you can always rely on
one of these two commands to close the command prompt:

 ✓ sys.exit()

 ✓ os._exit()

56 Part I: Getting Started with Python

Both of these commands are used in emergency situations only. The first,
sys.exit(), provides special error-handling features that you discover in
Chapter 9. The second, os._exit(), exits Python without performing any of
the usual cleanup tasks. In both cases, you must import the required module,
either sys or os, before you can use the associated command. Consequently,
to use the sys.exit() command, you actually use this code:

import sys
sys.exit()

You must provide an error code when using os._exit() because this
 command is used only when an extreme error has occurred. The call to
this command will fail if you don’t provide an error code. To use the os._
exit() command, you actually use this code (where the error code is 5):

import os
os._exit(5)

Chapter 10 discusses importing modules in detail. For now, just know that
these two commands are for special uses only and you won’t normally use
them in an application.

Chapter 4

Writing Your First Application
In This Chapter
▶ Working with the Integrated DeveLopment Environment (IDLE)

▶ Getting started with IDLE

▶ Writing the first application

▶ Seeing how the first application works

▶ Formatting your application code

▶ Using comments effectively

▶ Working with existing applications

▶ Ending your IDLE session

M
any people view application development as some sort of magic prac-
ticed by wizards called geeks who wave their keyboard to produce

software both great and small. However, the truth is a lot more mundane.

Application development follows a number of processes. It’s more than a
strict procedure, but is most definitely not magic of any sort. As Arthur C.
Clark once noted, “Any sufficiently advanced technology is indistinguishable
from magic.” This chapter is all about removing the magic from the picture
and introducing you to the technology. By the time you’re finished with this
chapter, you too will be able to develop a simple application (and you won’t
use magic to do it).

As with any other task, people use tools to write applications. In the case of
Python, you don’t have to use a tool, but using a tool makes the task so much
easier that you really will want to use one. In this chapter, you use a tool that
comes with Python, the Integrated DeveLopment Environment (IDLE). In the
previous chapter, you use the command-line tool to play around with Python
a little. However, IDLE goes further than the command line tool and makes it
possible to write applications with greater ease.

58 Part I: Getting Started with Python

 A vast number of other tools are available for you to use when writing Python
applications. This book doesn’t tell you much about them because IDLE per-
forms every task needed and it comes with Python. However, as your skills
increase, you might find that tools such as Komodo Edit (http://www.
activestate.com/komodo-edit/downloads) are easier to work with
than IDLE. You can find a great list of these tools at https://wiki.python.
org/moin/IntegratedDevelopmentEnvironments.

Understanding the Integrated
DeveLopment Environment (IDLE)

You can literally create any Python application you want using just a text
editor. As long as the editor outputs pure text rather than formatted text as
a word processor does, you can use it to write Python code. However, using
a text editor isn’t efficient or straightforward. To make the development pro-
cess easier, developers have written Interactive Development Environments
(IDEs). The IDE that comes with Python is IDLE. However, many other IDEs
are capable of working with Python.

 The feature set provided by IDEs varies. In fact, that’s why there are so many
of them on the market. IDLE provides a basic feature set that is shared by
most IDEs out there. It provides the functionality required to

 ✓ Write Python code.

 ✓ Recognize and highlight keywords and certain types of special text.

 ✓ Perform both simple editing (such as cut, copy, and paste) and code-
specific editing (such as showing the parentheses that surround an
expression).

 ✓ Save and open Python files.

 ✓ Browse the Python path to make locating files easy.

 ✓ Browse and locate Python classes.

 ✓ Perform simple debugging tasks (removing errors from the code).

IDLE differs from the command-line version of Python in that you get a full-
fledged GUI and you can accomplish many tasks much more easily through
IDLE than through the command line. In addition, the command line doesn’t
really offer all the same features as IDLE. Yes, you can debug your application
using the command line, but it’s a difficult, error-prone process. Using IDLE is
a whole lot easier.

59 Chapter 4: Writing Your First Application

Starting IDLE
You find IDLE in the Python 3.3 folder on your system as IDLE (Python GUI).
When you click or double-click this entry (depending on your platform), you
see the IDLE editor shown in Figure 4-1. The two lines of text contain informa-
tion about the Python host and provide suggestions on the commands you
can try. The precise information you see differs by platform. Your screen-
shots may differ from mine depending on the version of Python you use, the
platform you use, how you have IDLE configured, and how you have your
system configured.

Figure 4-1:
IDLE pro­
vides you

with a GUI
editing

experience
for your

application
code.

60 Part I: Getting Started with Python

Using standard commands
IDLE provides all the same commands as the command-line version of
Python. It doesn’t list them all because the assumption is that you’ll use
the GUI features of IDLE to make things easy. However, if you want, you can
type help() and press Enter to enter help mode, even though this com-
mand isn’t listed as one of the initial commands for IDLE as it is for the
command-line version. Figure 4-2 shows the results.

Figure 4-2:
You can

access all
the same

commands
in IDLE that

you can with
the com­

mand line
version.

61 Chapter 4: Writing Your First Application

Understanding color coding
The book doesn’t show the color coding that you see when you type help(),
but you can see it in the editor. Color coding lets you see commands with
greater ease and differentiate commands from other sorts of text. Press Enter
to get out of help mode. As with the command-line version, you see descrip-
tive text each time you perform an action.

Now, type print('This is some text.') and press Enter. You see the expected
output, just as you normally would (see Figure 4-3). Notice the color coding,
though. The print() command is in purple text to show that it’s a com-
mand. The text within the print() command is green to show that it’s data
and not a command. The output is shown in blue. The color coding makes
things a lot easier, which is just one of many reasons that using IDLE is easier
than using the command line.

Figure 4-3:
With color

coding, you
can easily
determine
the use for
each kind

of text in an
application.

62 Part I: Getting Started with Python

Getting GUI help
IDLE makes obtaining the help you need easy. Look at the Help menu and you
see three entries for obtaining help:

 ✓ About IDLE: Provides you with the latest information about IDLE.

 ✓ IDLE Help: Shows you a text file containing information about working
with the IDLE IDE. For example, this is where you find a list of the IDLE
commands.

 ✓ Python Docs: Contains information required to work with Python com-
mands and other elements.

Choose Help➪About IDLE to see the About IDLE dialog box shown in Figure 4-4.
Near the middle of the dialog box, you see URLs for obtaining additional help.
Each of the buttons displays a text file containing useful information, especially
in the README and NEWS files. Click Close to exit this dialog box.

Figure 4-4:
The About

IDLE dialog
box contains
useful infor­
mation that

you might
not see

otherwise.

Precisely what you see when you choose Help➪Python Docs depends on the
platform you use. Figure 4-5 shows the Windows version of the dialog box.
The Python Docs file contains information about how to work with and use
Python to create applications. It even has a tutorial section in which you can
find additional helpful tips after working your way through this book.

63 Chapter 4: Writing Your First Application

Figure 4-5:
Use Python
Docs to dis­
cover more
about using

Python
to create

applications.

Configuring IDLE
IDLE is basically a fancy text editor, when you think about it, so it’s not sur-
prising that you can configure it to perform the task of editing text better.
Choose Options➪Configure IDLE to see the IDLE Preferences dialog box
shown in Figure 4-6. This is where you can choose things like what font IDLE
uses when displaying text. In the figure, you see the Font/Tabs tab, which lets
you choose the size and style font used for text, along with the number of
spaces used for indentation (see the “Understanding the Use of Indentation”
section of this chapter for details).

As previously mentioned, IDLE uses color coding to make reading and under-
standing the code easier. This tab lets you choose the colors used to perform
highlighting, as shown in Figure 4-7. Notice that you can save your selections
as a theme. You can create different themes for different needs. For example,
you may use one theme when you use your laptop or other computing device
in bright conditions and another theme in low light conditions.

64 Part I: Getting Started with Python

Figure 4-6:
Configure

IDLE to
meet your
particular

require­
ments.

Figure 4-7:
Change the
highlighting

used for text
so that you

can see it
better.

65 Chapter 4: Writing Your First Application

Even though you won’t see shortcut keys used very often in this book due
to platform differences, IDLE does support them. The shortcut keys on your
platform may differ from those shown in Figure 4-8. IDLE comes with built-
in key sets for Windows, Mac, OS X, and Unix. You can choose any of these
themes by clicking the small button next to the IDLE Classic Windows entry
(see Figure 4-8). You can also create your own custom theme that’s based on
another application you use.

Figure 4-8:
Use shortcut

keys that
make the

most sense
to you as a
developer.

The General tab, shown in Figure 4-9, controls how IDLE works. For example,
you can tell IDLE to open a Python Shell window (so that you can experi-
ment) or an Edit window (so that you can write an application). The default
is to open a Python Shell window so that you can experiment with Python
and try new techniques. You can also control whether IDLE prompts you to
save files before running applications (always a good idea in case the applica-
tion causes the system to freeze) and the size of the initial window when you
create one. Paragraph formatting keeps your text from becoming too long to
comfortably see in the window. The defaults you see normally work just fine,
so there really isn’t a good reason to change them.

66 Part I: Getting Started with Python

Figure 4-9:
The General
tab controls

the func­
tioning of
the IDLE

application.

The Additional Help Sources feature lets you create new help sources for IDLE
to use. For example, you can create a link to an online source, such as Python’s
online documentation at https://docs.python.org/release/3.3.4/. To
add a new source, click Add. You see the New Help Source dialog box, shown in
Figure 4-10, where you can add the text that appears on the Help menu for this
information source and the location of that source on a hard drive or online.
When you finish adding the source, click OK and you’ll see it added to the IDLE
Help menu. There are also buttons on the General tab of the IDLE Preferences
dialog box for editing and removing help sources.

Figure 4-10:
Create

new help
sources as
needed to
make your

develop­
ment experi­
ence easier.

67 Chapter 4: Writing Your First Application

Creating the Application
It’s time to create your first Python application. Your initial Python Shell
window won’t work for creating an application, so you can begin by creating
a new Edit window for the application. You’ll type the required commands
and then save the file to disk.

Opening a new window
The initial Python Shell window is just fine for experimentation, but you need
a nice, clean Edit window for typing your first application. The Python Shell
window is interactive, which means that it gives you immediate feedback for
any commands you type. The Edit window provides a static environment,
where you type commands, save them, and then run them after you type
enough commands to create an application. The two windows serve dis-
tinctly different purposes.

 Choose File➪New File to create a new window. A new window like the one
shown in Figure 4-11 opens. Notice that the title bar says Python 3.3.4 Untitled
instead of Python 3.3.4 Shell. A Python Shell window will always have the
word “Shell” in the title bar. The two windows also have some unique toolbar
entries. For example, an Edit window includes the Run command, which you
use later to test your application.

Figure 4-11:
Use the Edit

window
to create

applications.

Working with the Edit window is just like working with any other text editor.
You have access to basic editing commands such as Copy, Cut, and Paste.
Pressing Enter moves to the next line rather than executing a command as
it would when working in the Python Shell window. That’s because the Edit
window is a static environment — one where you type commands and save
them for later reuse.

68 Part I: Getting Started with Python

The Edit window also provides special commands to format the text. The
“Understanding the Use of Indentation” and “Adding Comments” sections of
this chapter describe how to use the formatting features. What you need to
know now is that these formatting commands act differently from those in a
standard text editor because they help you control the appearance of code
rather than of generic text. Many of the formatting features work automati-
cally, so you don’t need to worry about them now.

Finally, the Edit window provides access to commands that tell Python to
perform the steps in the procedure you create one at a time. This process is
called running the application. The “Running the Application” section of this
chapter describes this process in greater detail.

Typing the command
As with the Python Shell window, you can simply type a command into the
Edit window. To see how this works, type print(. Notice that the Edit window
provides you with helpful information about the print() command, as
shown in Figure 4-12. The information is a little terse, so you may not under-
stand it now. As the book progresses, you learn more about the print()
command and the help provided by the Edit window will make more sense.
For now, the word value is the one that you need to focus on. The print()
command needs a value before it can print anything and you’ll encounter a
host of different values as the book progresses.

Figure 4-12:
The Edit

window pro­
vides helpful

information
about the

commands
you type.

69 Chapter 4: Writing Your First Application

Finish the command by typing “This is a simple Python application.”)
and pressing Enter. Your application should look like the one shown in
Figure 4-13. This is one of the simplest applications you can create using
Python.

Figure 4-13:
A complete
application

can be quite
short.

Saving the file
You could run the application now if you wanted to. However, saving your
application before you run it is always a good idea. That way, if you make a
mistake that causes Python or the system to freeze for some reason, your
application code is still safe. Saving the application makes it easier to go back
later to determine what went wrong, make corrections, and try running the
application again.

Choose File➪Save to display the Save As dialog box, shown in Figure 4-14.
The Edit window automatically chooses the Python33 folder to save the
application in. However, this is where the Python code resides, and saving
your application code in the same folder is a bad idea.

The example code for this book is contained in a folder named BP4D
(Beginning Python For Dummies). The code for this chapter is found in
the \BP4D\Chapter04 subfolder of the downloadable source (see the
Introduction for the location of the source code online). If you want, create
a directory structure with similar names using a technique that works for
your platform as you follow along in the book. You can also open the down-
loadable source code file for the book and avoid typing the example code.

70 Part I: Getting Started with Python

Type FirstApp.py in the Filename field of the Save As dialog box and click
Save. Your application code is now saved on disk and you can access it
anytime you want.

Figure 4-14:
The Save As

dialog box
provides the

means for
saving your
application.

When you return to the Edit window, the title bar text changes, as shown in
Figure 4-15. Notice that the title bar includes the full path to the application.

Figure 4-15:
An applica­
tion on disk
displays its

name and
path in the

title bar.

71 Chapter 4: Writing Your First Application

Running the Application
Applications aren’t much good if you can’t run them. Python provides a
variety of methods for running any application you create. This section
explores the easiest method for running an application after you create
it. You see additional methods in the “Loading and Running Existing
Applications” section of the chapter. The important thing to remember is
that Python provides an extremely flexible environment, so if one method
of performing a task doesn’t quite work, another method will almost cer-
tainly succeed.

To run this first application, choose Run➪Run Module. You see a new copy
of the Python Shell window opens and then the output of your application
appears, as shown in Figure 4-16.

Figure 4-16:
The output

of the
example

application
appears in a
Python Shell

window.

The top two lines of the output in Figure 4-16 should be familiar by now —
they’re the information that always appears when you start the shell. Next
comes a

================================ RESTART ================================

message. You see this message every time you run the application. To see
this for yourself, select the Edit window and choose Run➪Run Module. The
original Python Shell window is selected, another message appears, and you
see the output from your application again, as shown in Figure 4-17.

72 Part I: Getting Started with Python

Figure 4-17:
The Python

Shell
window
displays

a Restart
message

each time
you run the
application.

Understanding the Use of Indentation
As you work through the examples in this book, you see that certain lines
are indented. In fact, the examples also provide a fair amount of white space
(such as extra lines between lines of code). Python ignores any indentation
in your application. The main reason to add indentation is to provide visual
cues about your code. In the same way that indentation is used for book
outlines, indentation in code shows the relationships between various code
elements.

The various uses of indentation will become more familiar as you work your
way through the examples in the book. However, it’s important to know at
the outset why indentation is used and how it gets put in place. So, it’s time
for another example. The following steps help you create a new example that
uses indentation to make the relationship between application elements a lot
more apparent and easier to figure out later.

 1. Choose File➪New File.

 IDLE creates a new Edit window for you.

 2. Type print(“This is a really long line of text that will ” +.

 You see the text displayed normally onscreen, just as you expect. The
plus sign (+) tells Python that there is additional text to display. Adding
text from multiple lines together into a single long piece of text is called
concatenation. You learn more about using this feature later in the book,
so you don’t need to worry about it now.

 3. Press Enter.

 The insertion point doesn’t go back to the beginning of the line, as you
might expect. Instead, it ends up directly under the first double quote,

73 Chapter 4: Writing Your First Application

as shown in Figure 4-18. This feature is called automatic indention and
it’s one of the features that differentiates a regular text editor from one
designed to write code.

 4. Type “appear on multiple lines in the source code file.”) and press Enter.

 Notice that the insertion point goes back to the beginning of the line.
When IDLE senses that you have reached the end of the code, it auto-
matically outdents the text to its original position.

 5. Choose File➪Save.

 You see the Save As dialog box.

 6. Type LongLine.py in the File Name field and click Save to save it.

 7. Choose Run➪Run Module.

 A new Python Shell window opens with the text displayed. Even though
the text appears on multiple lines in the source code file, it appears on
just one line in the output, as shown in Figure 4-19.

Figure 4-18:
The Edit
window

automati­
cally indents

some types
of text.

Figure 4-19:
Use concat­

enation to
make mul­

tiple lines of
text appear
on a single
line in the

output.

74 Part I: Getting Started with Python

Adding Comments
People create notes for themselves all the time. When you need to buy gro-
ceries, you look through your cabinets, determine what you need, and write
it down on a list. When you get to the store, you review your list to remember
what you need. Using notes comes in handy for all sorts of needs, such as
tracking the course of a conversation between business partners or remem-
bering the essential points of a lecture. Humans need notes to jog their mem-
ories. Comments in source code are just another form of note. You add them
to the code so that you can remember what task the code performs later. The
following sections describe comments in more detail.

Understanding comments
Computers need some special way to determine that the text you’re writing
is a comment, not code to execute. Python provides two methods of defining
text as a comment and not as code. The first method is the single-line com-
ment. It uses the number sign (#), like this:

This is a comment.
print("Hello from Python!") #This is also a comment.

 A single-line comment can appear on a line by itself or it can appear after
executable code. It appears on only one line. You typically use a single-line
comment for short descriptive text, such as an explanation of a particular bit
of code.

When you need to create a longer comment, you use a multiline comment. A
multiline comment both starts and ends with three double quotes ("""), like
this:

"""
 Application: Comments.py
 Written by: John
 Purpose: Shows how to use comments.
"""

 Everything between the two sets of triple double quotes is considered a com-
ment. You typically use multiline comments for longer explanations of who
created an application, why it was created, and what tasks it performs. Of
course, there aren’t any hard rules on precisely how you use comments. The
main goal is to tell the computer precisely what is and isn’t a comment so that
it doesn’t become confused.

75 Chapter 4: Writing Your First Application

 Even though single-line and multiline comments are both comments, the IDLE
editor makes it easy to tell the difference between the two. When you’re using
the default color scheme, single-line comments show up in red text, while
multiline comments show up in green text. Python doesn’t care about the col-
oration; it’s only there to help you as the developer.

Using comments to leave
yourself reminders
A lot of people don’t really understand comments — they don’t quite know
what to do with notes in code. Keep in mind that you might write a piece
of code today and then not look at it for years. You need notes to jog your
memory so that you remember what task the code performs and why you
wrote it. In fact, here are some common reasons to use comments in your
code:

 ✓ Reminding yourself about what the code does and why you wrote it

 ✓ Telling others how to maintain your code

 ✓ Making your code accessible to other developers

 ✓ Listing ideas for future updates

 ✓ Providing a list of documentation sources you used to write the code

 ✓ Maintaining a list of improvements you’ve made

You can use comments in a lot of other ways, too, but these are the most
common ways. Look at the way comments are used in the examples in the
book, especially as you get to later chapters where the code becomes more
complex. As your code becomes more complex, you need to add more com-
ments and make the comments pertinent to what you need to remember
about it.

Using comments to keep
code from executing
Developers also sometimes use the commenting feature to keep lines of code
from executing (referred to as commenting out). You might need to do this in
order to determine whether a line of code is causing your application to fail.
In fact, it’s such a common and useful way to work with code that a technique
for adding this sort of comment is built right in to IDLE. Here’s an example of

76 Part I: Getting Started with Python

how this feature works. Say that you have an application like the one shown
in Figure 4-20 (found in the Comments.py file provided as part of the down-
loadable source code).

Figure 4-20:
Sometimes
developers

need to
comment

out lines of
code.

You might want to comment out the line that reads print("This code
is commented out."). To make this happen, place the insertion point
at the beginning of the line, or simply select the entire line, and choose
Format➪Comment Out Region. IDLE then adds a single-line comment to the
code, as shown in Figure 4-21. Notice that this single-line comment uses two
number signs (##) to differentiate it from a single-line comment you create
by hand.

Figure 4-21:
Comment

out any
code you

don’t want
Python to
execute.

77 Chapter 4: Writing Your First Application

Of course, you don’t know yet whether the commenting has worked. Save the
file to disk and then choose Run➪Run Module. You see a new Python Shell
window open with just a single line of output, as shown in Figure 4-22. So, the
first print() command, which isn’t commented out, executes just fine, but
the second one doesn’t.

Figure 4-22:
Commented
out lines of
code don’t

execute.

To add the code back into the application, place the insertion point at the begin-
ning of the line, or highlight the entire line, and choose Format➪Uncomment
Region. IDLE removes the comment that it added earlier. Save the file and then
choose Run➪Run Module to see the result. This time, you see both print()
commands execute, as shown in Figure 4-23.

Figure 4-23:
Both

print()
commands

execute
when nei­

ther is com­
mented out.

 You can comment out multiple lines of code at once by highlighting all of the
lines and choosing Format➪Comment Out Region. Likewise, you can uncom-
ment out multiple lines of code by highlighting all the lines and choosing
Format➪Uncomment Region. It isn’t necessary to comment out or uncomment
out one line at a time unless you have just one line of code to check.

78 Part I: Getting Started with Python

Loading and Running Existing
Applications

Running your application immediately after you write it is fun and interest-
ing, but at some point you’ll close IDLE and be left with a file on your disk.
The file contains your application, but you need to know how to use that
file to execute it. Python actually provides a considerable number of ways
to achieve this task. The following sections describe just three of these
approaches.

Using the command line
or terminal window
The command line, or terminal window, provides the means to execute com-
mands by typing them in. You can also create batch files to execute a number
of commands as part of a batch process. In this case, you’re looking at the
native command environment provided by the platform you’re using, rather
than at the specialized Python command line. When working in this environ-
ment, you type commands to start Python and perform specific tasks. For
example, if you want to execute FirstApp (described in the “Creating the
Application” section of this chapter), you type python FirstApp.py and press
Enter. Figure 4-24 shows typical results. You can execute any other applica-
tion this way as well.

Figure 4-24:
It’s possible

to execute
an applica­
tion directly
at the com­
mand line.

79 Chapter 4: Writing Your First Application

Using the Edit window
Any time you’re in IDLE, you can open an existing application in an Edit
window and execute it, just as you have in previous sections of this chapter.
To perform this task, load the file you saved earlier by choosing File➪Open.
You see an Open dialog box that looks similar to the Save As dialog box
shown in Figure 4-14. Choose the folder containing the application in the
Look In field and highlight it in the list provided. Click Open to open the file.
At this point, you can choose Run➪Run Module to run the application, just as
you would normally.

Using the Python Shell window
or Python command line
When you’re in the IDLE Python Shell window or at the Python command
line, you’re in an environment where you can type commands and see them
executed immediately. However, you need to know the right commands to
perform specific tasks. In this case, the command is a little more complex
than the print() command you’ve been using to date. If you want to exe-
cute FirstApp, you need a really odd-looking command like one of the two
shown here:

exec(open("C:\\BP4D\\Chapter04\\FirstApp.py").read())
exec(open("C:/BP4D/Chapter04/FirstApp.py").read())

 The preceding two commands are really the same one using a different type of
slash. The command works equally well with forward slashes or backslashes.
What this command says to do is this:

 1. Open the FirstApp.py file located in the \BP4D\Chapter04 folder on the
C drive (open() command).

 2. Read the content of this file into the Python environment (read()
command).

 3. Execute the instructions found in the file after it’s loaded (exec()
command).

It’s a little early for a command like this one, but you’ll discover that you can
create combined commands of all sorts later in the book. For now, just try
the command to see that it works. Figure 4-25 shows typical results.

80 Part I: Getting Started with Python

Figure 4-25:
Use forward

slashes or
backslashes

to define
the loca­

tion of your
application.

Closing IDLE
Eventually, you need to close IDLE when your session is finished. The com-
mands for closing IDLE appear on the File menu, and there are actually two of
them (which seems a bit confusing):

 ✓ Close: Closes just the window that currently has focus. This means that
if you’re in a Python Shell window after running an application, just the
Python Shell window closes and not the associated Edit window.

 ✓ Exit: Closes the current window and all associated windows. This means
that if you’re in a Python Shell window after running an application, both
the Python Shell window and the associated Edit window close.

When you close a window, IDLE checks to ensure that you have saved any
content to disk. If you haven’t saved the content, you see a dialog box asking
whether you want to save it.

The File➪Close and File➪Exit commands affect only the current session. For
example, if you open two separate Python files, you need to close each file
separately because each file is opened in a separate session.

Part II
Talking the Talk

 See an example of how you can combine functions and repetitive tasks at
www.dummies.com/extras/beginningprogramming
withpython.

In this part . . .
 ✓ See how to create variables to hold data.

 ✓ Create functions to make code easier to read.

 ✓ Tell your Python application to make a decision.

 ✓ Perform repeating tasks.

 ✓ Ensure that your application can deal with errors.

Chapter 5

Storing and Modifying Information
In This Chapter
▶ Understanding data storage

▶ Considering the kinds of data storage

▶ Adding dates and times to applications

C
hapter 3 introduces you to CRUD, Create, Read, Update, and Delete — not
that Chapter 3 contains cruddy material. This acronym provides an easy

method to remember precisely what tasks all computer programs perform
with information you want to manage. Of course, geeks use a special term for
information — data, but either information or data works fine for this book.

 In order to make information useful, you have to have some means of storing
it permanently. Otherwise, every time you turned the computer off, all your
information would be gone and the computer would provide limited value. In
addition, Python must provide some rules for modifying information. The alter-
native is to have applications running amok, changing information in any and
every conceivable manner. This chapter is about controlling information —
defining how information is stored permanently and manipulated by applica-
tions you create.

Storing Information
An application requires fast access to information or else it will take a long
time to complete tasks. As a result, applications store information in memory.
However, memory is temporary. When you turn off the machine, the informa-
tion must be stored in some permanent form, such as on your hard drive, a
Universal Serial Bus (USB) flash drive, or a Secure Digital (SD) card. In addi-
tion, you must also consider the form of the information, such as whether it’s
a number or text. The following sections discuss the issue of storing informa-
tion as part of an application in more detail.

84 Part II: Talking the Talk

Seeing variables as storage boxes
When working with applications, you store information in variables. A variable
is a kind of storage box. Whenever you want to work with the information, you
access it using the variable. If you have new information you want to store,
you put it in a variable. Changing information means accessing the variable
first and then storing the new value in the variable. Just as you store things in
boxes in the real world, so you store things in variables (a kind of storage box)
when working with applications.

 Computers are actually pretty tidy. Each variable stores just one piece of infor-
mation. Using this technique makes it easy to find the particular piece of infor-
mation you need — unlike in your closet, where things from ancient Egypt could
be hidden. Even though the examples you work with in previous chapters don’t
use variables, most applications rely heavily on variables to make working with
information easier.

Using the right box to store the data
People tend to store things in the wrong sort of box. For example, you might
find a pair of shoes in a garment bag and a supply of pens in a shoebox.
However, Python likes to be neat. As a result, you find numbers stored in
one sort of variable and text stored in an entirely different kind of variable.
Yes, you use variables in both cases, but the variable is designed to store a
particular kind of information. Using specialized variables makes it possible
to work with the information inside in particular ways. You don’t need to
worry about the details just yet — just keep in mind that each kind of infor-
mation is stored in a special kind of variable.

 Python uses specialized variables to store information to make things easy for
the programmer and to ensure that the information remains safe. However,
computers don’t actually know about information types. All that the computer
knows about are 0s and 1s, which is the absence or presence of a voltage. At
a higher level, computers do work with numbers, but that’s the extent of what
computers do. Numbers, letters, dates, times, and any other kind of informa-
tion you can think about all come down to 0s and 1s in the computer system.
For example, the letter A is actually stored as 01000001 or the number 65. The
computer has no concept of the letter A or of a date such as 8/31/2014.

85 Chapter 5: Storing and Modifying Information

Defining the Essential Python Data Types
Every programming language defines variables that hold specific kinds of
information, and Python is no exception. The specific kind of variable is
called a data type. Knowing the data type of a variable is important because it
tells you what kind of information you find inside. In addition, when you want
to store information in a variable, you need a variable of the correct data
type to do it. Python doesn’t allow you to store text in a variable designed
to hold numeric information. Doing so would damage the text and cause
problems with the application. You can generally classify Python data types
as numeric, string, and Boolean, although there really isn’t any limit on just
how you can view them. The following sections describe each of the standard
Python data types within these classifications.

Putting information into variables
To place a value into any variable, you make an assignment using the assign-
ment operator (=). Chapter 6 discusses the whole range of basic Python
operators in more detail, but you need to know how to use this particular
operator to some extent now. For example, to place the number 5 into a
variable named myVar, you type myVar = 5 and press Enter at the Python
prompt. Even though Python doesn’t provide any additional information to
you, you can always type the variable name and press Enter to see the value
it contains, as shown in Figure 5-1.

Figure 5-1:
Use the

assignment
operator to
place infor­
mation into
a variable.

Understanding the numeric types
Humans tend to think about numbers in general terms. We view 1 and 1.0 as
being the same number — one of them simply has a decimal point. However,
as far as we’re concerned, the two numbers are equal and we could easily use
them interchangeably. Python views them as being different kinds of numbers

86 Part II: Talking the Talk

because each form requires a different kind of processing. The following sec-
tions describe the integer, floating-point, and complex number classes of data
types that Python supports.

Integers
Any whole number is an integer. For example, the value 1 is a whole number,
so it’s an integer. On the other hand, 1.0 isn’t a whole number; it has a deci-
mal part to it, so it’s not an integer. Integers are represented by the int
data type.

 As with storage boxes, variables have capacity limits. Trying to stuff a
value that’s too large into a storage box results in an error. On most plat-
forms, you can store numbers between –9,223,372,036,854,775,808 and
9,223,372,036,854,775,807 within an int (which is the maximum value that
fits in a 64-bit variable). Even though that’s a really large number, it isn’t
infinite.

When working with the int type, you have access to a number of interesting
features. Many of them appear later in the book, but one feature is the ability
to use different numeric bases:

 ✓ Base 2: Uses only 0 and 1 as numbers.

 ✓ Base 8: Uses the numbers 0 through 7.

 ✓ Base 10: Uses the usual numeric system.

 ✓ Base 16: Is also called hex and uses the numbers 0 through 9 and the let-
ters A through F to create 16 different possible values.

To tell Python when to use bases other than base 10, you add a 0 and a spe-
cial letter to the number. For example, 0b100 is the value one-zero-zero in
base 2. Here are the letters you normally use:

 ✓ b: Base 2

 ✓ o: Base 8

 ✓ x: Base 16

It’s also possible to convert numeric values to other bases using the bin(),
oct(), and hex() commands. So, putting everything together, you can see
how to convert between bases using the commands shown in Figure 5-2.
Try the command shown in the figure yourself so that you can see how the
various bases work. Using a different base actually makes things easier in
many situations, and you’ll encounter some of those situations later in the
book. For now, all you really need to know is that integers support different
numeric bases.

87 Chapter 5: Storing and Modifying Information

Figure 5-2:
Integers

have many
interesting

features,
including

the capabil­
ity to use
different
numeric

bases.

Floating-point values
Any number that includes a decimal portion is a floating-point value. For
example, 1.0 has a decimal part, so it’s a floating-point value. Many people get
confused about whole numbers and floating-point numbers, but the difference
is easy to remember. If you see a decimal in the number, then it’s a floating-
point value. Python stores floating-point values in the float data type.

 Floating-point values have an advantage over integer values in that you can
store immensely large or incredibly small values in them. As with integer vari-
ables, floating-point variables have a storage capacity. In their case, the maxi-
mum value that a variable can contain is ±1.7976931348623157 × 10308 and the
minimum value that a variable can contain is ±2.2250738585072014 × 10-308 on
most platforms.

When working with floating-point values, you can assign the information to
the variable in a number of ways. The two most common methods are to pro-
vide the number directly and to use scientific notation. When using scientific
notation, an e separates the number from its exponent. Figure 5-3 shows both
methods of making an assignment. Notice that using a negative exponent
results in a fractional value.

88 Part II: Talking the Talk

Figure 5-3:
Floating­

point values
provide
multiple

assignment
techniques.

Complex numbers
You may or may not remember complex numbers from school. A complex
number consists of a real number and an imaginary number that are paired
together. Just in case you’ve completely forgotten about complex numbers,
you can read about them at http://www.mathsisfun.com/numbers/
complex-numbers.html. Real-world uses for complex numbers include:

 ✓ Electrical engineering

 ✓ Fluid dynamics

 ✓ Quantum mechanics

 ✓ Computer graphics

 ✓ Dynamic systems

Complex numbers have other uses, too, but this list should give you some
ideas. In general, if you aren’t involved in any of these disciplines, you prob-
ably won’t ever encounter complex numbers. However, Python is one of the
few languages that provides a built-in data type to support them. As you
progress through the book, you find other ways in which Python lends itself
especially well to science and engineering.

The imaginary part of a complex number always appears with a j after it. So,
if you want to create a complex number with 3 as the real part and 4 as the
imaginary part, you make an assignment like this:

myComplex = 3 + 4j

If you want to see the real part of the variable, you simply type myComplex.
real at the Python prompt and press Enter. Likewise, if you want to see the
imaginary part of the variable, you type myComplex.imag at the Python
prompt and press Enter.

89 Chapter 5: Storing and Modifying Information

Understanding Boolean values
It may seem amazing, but computers always give you a straight answer! A
computer will never provide “maybe” as output. Every answer you get is either
True or False. In fact, there is an entire branch of mathematics called Boolean
algebra that was originally defined by George Boole (a super-geek of his time)
that computers rely upon to make decisions. Contrary to common belief,
Boolean algebra has existed since 1854 — long before the time of computers.

Understanding the need for multiple number types
A lot of new developers (and even some older
ones) have a hard time understanding why
there is a need for more than one numeric
type. After all, humans can use just one kind
of number. To understand the need for multiple
number types, you have to understand a little
about how a computer works with numbers.

An integer is stored in the computer as simply a
series of bits that the computer reads directly. A
value of 0100 in binary equates to a value of 4 in
decimal. On the other hand, numbers that have
decimal points are stored in an entirely different
manner. Think back to all those classes you slept
through on exponents in school — they actu­
ally come in handy sometimes. A floating­point
number is stored as a sign bit (plus or minus),
mantissa (the fractional part of the number), and
exponent (the power of 2). (Some texts use the
term significand in place of mantissa — the terms
are interchangeable.) To obtain the floating­point
value, you use the equation:

Value = Mantissa * 2^Exponent

At one time, computers all used different
floating­point representations, but they all
use the IEEE­754 standard now. You can read
about this standard at http://grouper.
ieee.org/groups/754/. A full explana­
tion of precisely how floating­point numbers
work is outside the scope of this book, but

you can read a fairly understandable descrip­
tion at http://www.cprogramming.
com/tutorial/floating_point/
understanding_floating_point_
representation.html. Nothing helps
you understand a concept like playing with the
values. You can find a really interesting float­
ing­point number converter at http://www.
h-schmidt.net/FloatConverter/
IEEE754.html, where you can click the
individual bits (to turn them off or on) and see
the floating­point number that results.

As you might imagine, floating­point num­
bers tend to consume more space in memory
because of their complexity. In addition, they use
an entirely different area of the processor —
one that works more slowly than the part used
for integer math. Finally, integers are precise,
as contrasted to floating­point numbers, which
can’t precisely represent some numbers, so you
get an approximation instead. However, floating­
point variables can store much larger numbers.
The bottom line is that decimals are unavoid­
able in the real world, so you need floating­point
numbers, but using integers when you can
reduces the amount of memory your application
consumes and helps it work faster. There are
many trade­offs in computer systems, and this
one is unavoidable.

90 Part II: Talking the Talk

When using Boolean value in Python, you rely on the bool type. A variable of
this type can contain only two values: True or False. You can assign a value
by using the True or False keywords, or you can create an expression that
defines a logical idea that equates to true or false. For example, you could
say, myBool = 1 > 2, which would equate to False because 1 is most defi-
nitely not greater than 2. You see the bool type used extensively in the book,
so don’t worry about understanding this concept right now.

Understanding strings
Of all the data types, strings are the most easily understood by humans and
not understood at all by computers. If you have read the previous chapters
in this book, you have already seen strings used quite. For example, all the
example code in Chapter 4 relies on strings. A string is simply any grouping
of characters you place within double quotes. For example, myString =
"Python is a great language." assigns a string of characters to
myString.

The computer doesn’t see letters at all. Every letter you use is represented
by a number in memory. For example, the letter A is actually the number 65.
To see this for yourself, type ord(“A”) at the Python prompt and press Enter.
You see 65 as output. It’s possible to convert any single letter to its numeric
equivalent using the ord() command.

Because the computer doesn’t really understand strings, but strings are so
useful in writing applications, you sometimes need to convert a string to a
number. You can use the int() and float() commands to perform this
conversion. For example, if you type myInt = int(“123”) and press Enter at the
Python prompt, you create an int named myInt that contains the value 123.
Figure 5-4 shows how you can perform this task and validate the content and
type of myInt.

Determining a variable’s type
Sometimes you might want to know the vari­
able type. Perhaps the type isn’t obvious from
the code or you’ve received the information
from a source whose code isn’t accessible.
Whenever you want to see the type of a vari­
able, use the type() method. For example,

if you start by placing a value of 5 in myInt
by typing myInt = 5 and pressing Enter, you can
find the type of myInt by typing type(myInt)
and pressing Enter. The output will be <class
'int'>, which means that myInt contains
an int value.

91 Chapter 5: Storing and Modifying Information

Figure 5-4:
Converting
a string to
a number

is easy
using the

int() and
float()
commands.

You can convert numbers to a string as well by using the str() command.
For example, if you type myStr = str(1234.56) and press Enter, you create
a string containing the value "1234.56" and assign it to myStr. Figure 5-5
shows this type of conversion and the test you can perform on it. The point
is that you can go back and forth between strings and numbers with great
ease. Later chapters demonstrate how these conversions make a lot of seem-
ingly impossible tasks quite doable.

Figure 5-5:
It’s possible

to convert
numbers to

strings as
well.

Working with Dates and Times
Dates and times are items that most people work with quite a bit. Society
bases almost everything on the date and time that a task needs to be or
was completed. We make appointments and plan events for specific dates
and times. Most of our day revolves around the clock. Because of the time-
oriented nature of humans, it’s a good idea to look at how Python deals with
interacting with dates and time (especially storing these values for later use).
As with everything else, computers understand only numbers — the date and
time don’t really exist.

 To work with dates and times, you need to perform a special task in Python.
When writing computer books, chicken-and-egg scenarios always arise, and
this is one of them. To use dates and times, you must issue a special import

92 Part II: Talking the Talk

datetime command. Technically, this act is called importing a module, and you
learn more about it in Chapter 10. Don’t worry how the command works right
now — just use it whenever you want to do something with date and time.

Computers do have clocks inside them, but the clocks are for the humans
using the computer. Yes, some software also depends on the clock, but again,
the emphasis is on human needs rather than anything the computer might
require. To get the current time, you can simply type datetime.datetime.
now() and press Enter. You see the full date and time information as found on
your computer’s clock (see Figure 5-6).

Figure 5-6:
Get the cur­

rent date
and time
using the
now()

command.

You may have noticed that the date and time are a little hard to read in the
existing format. Say that you want to get just the current date, in a readable
format. It’s time to combine a few things you discovered in previous sections
to accomplish that task. Type str(datetime.datetime.now().date()) and press
Enter. Figure 5-7 shows that you now have something a little more usable.

Figure 5-7:
Make the
date and

time more
readable
using the
str()

command.

Interestingly enough, Python also has a time() command, which you can
use to obtain the current time. You can obtain separate values for each of the
components that make up date and time using the day, month, year, hour,
minute, second, and microsecond values. Later chapters help you under-
stand how to use these various date and time features to keep application
users informed about the current date and time on their system.

Chapter 6

Managing Information
In This Chapter
▶ Understanding the Python view of data

▶ Using operators to assign, modify, and compare data

▶ Organizing code using functions

▶ Interacting with the user

W
hether you use the term information or data to refer to the content
that applications manage, the fact is that you must provide some

means of working with it or your application really doesn’t have a purpose.
Throughout the rest of the book, you see information and data used inter-
changeably because they really are the same thing, and in real-world situ-
ations, you’ll encounter them both, so getting used to both is a good idea.
No matter which term you use, you need some means of assigning data to
variables, modifying the content of those variables to achieve specific goals,
and comparing the result you receive with desired results. This chapter
addresses all three requirements so that you can start to control data within
your applications.

It’s also essential to start working through methods of keeping your code
understandable. Yes, you could write your application as a really long proce-
dure, but trying to understand such a procedure is incredibly hard, and you’d
find yourself repeating some steps because they must be done more than
once. Functions are one way for you to package code so that it’s easier to
understand and reuse as needed.

Applications also need to interact with the user. Yes, some perfectly usable
applications are out there that don’t really interact with the user, but they’re
extremely rare and don’t really do much, for the most part. In order to pro-
vide a useful service, most applications interact with the user to discover
how the user wants to manage data. You get an overview of this process in
this chapter. Of course, you visit the topic of user interaction quite often
throughout the book because it’s an important topic.

94 Part II: Talking the Talk

Controlling How Python Views Data
As discussed in Chapter 5, all data on your computer is stored as 0s and 1s.
The computer doesn’t understand the concept of letters, Boolean values,
dates, times, or any other kind of information except numbers. In addition,
a computer’s capability to work with numbers is both inflexible and rela-
tively simplistic. When you work with a string in Python, you’re depending
on Python to translate the concept of a string into a form the computer can
understand. The storage containers that your application creates and uses in
the form of variables tell Python how to treat the 0s and 1s that the computer
has stored. So, it’s important to understand that the Python view of data isn’t
the same as your view of data or the computer’s view of data — Python acts
as an intermediary to make your applications functional.

 To manage data within an application, the application must control the way in
which Python views the data. The use of operators, packaging methods such
as functions, and the introduction of user input all help applications control
data. All these techniques rely, in part, on making comparisons. Determining
what to do next means understanding what state the data is in now as com-
pared to some other state. If the variable contains the name John now, but you
really want it to contain Mary instead, then you first need to know that it does
in fact contain John. Only then can you make the decision to change the con-
tent of the variable to Mary.

Making comparisons
Python’s main method for making comparisons is through the use of opera-
tors. In fact, operators play a major role in manipulating data as well. The
upcoming “Working with Operators” section discusses how operators work
and how you can use them in applications to control data in various ways.
Later chapters use operators extensively as you discover techniques for
creating applications that can make decisions, perform tasks repetitively,
and interact with the user in interesting ways. However, the basic idea
behind operators is that they help applications perform various types of
comparisons.

In some cases, you use some fancy methods for performing comparisons in
an application. For example, you can compare the output of two functions (as
described in the “Comparing function output” section, later in this chapter).
With Python, you can perform comparisons at a number of levels so that you
can manage data without a problem in your application. Using these tech-
niques hides detail so that you can focus on the point of the comparison and
define how to react to that comparison rather than become mired in detail.

95 Chapter 6: Managing Information

Your choice of techniques for performing comparisons affects the manner in
which Python views the data and determines the sorts of things you can do
to manage the data after the comparison is made. All this functionality might
seem absurdly complex at the moment, but the important point to remem-
ber is that applications require comparisons in order to interact with data
correctly.

Understanding how computers
make comparisons
Computers don’t understand packaging, such as functions, or any of the
other structures that you create with Python. All this packaging is for your
benefit, not the computer’s. However, computers do directly support the
concept of operators. Most Python operators have a direct corollary with a
command that the computer understands directly. For example, when you
ask whether one number is greater than another number, the computer can
actually perform this computation directly, using an operator. (The upcoming
section explains operators in detail.)

 Some comparisons aren’t direct. Computers work only with numbers. So,
when you ask Python to compare two strings, what Python actually does is
compare the numeric value of each character in the string. For example, the
letter A is actually the number 65 in the computer. A lowercase letter a has a
different numeric value — 97. As a result, even though you might see ABC as
being equal to abc, the computer doesn’t agree — it sees them as different
because the numeric values of their individual letters are different.

Working with Operators
Operators are the basis for both control and management of data within
applications. You use operators to define how one piece of data is compared
to another and to modify the information within a single variable. In fact,
operators are essential to performing any sort of math-related task and to
assigning data to variables in the first place.

 When using an operator, you must supply either a variable or an expression.
You already know that a variable is a kind of storage box used to hold data.
An expression is an equation or formula that provides a description of a math-
ematical concept. In most cases, the result of evaluating an expression is a
Boolean (true or false) value. The following sections describe operators in
detail because you use them everywhere throughout the rest of the book.

96 Part II: Talking the Talk

Defining the operators
An operator accepts one or more inputs in the form of variables or expressions,
performs a task (such as comparison or addition), and then provides an output
consistent with that task. Operators are classified partially by their effect and
partially by the number of elements they require. For example, a unary opera-
tor works with a single variable or expression; a binary operator requires two.

 The elements provided as input to an operator are called operands. The oper-
and on the left side of the operator is called the left operand, while the oper-
and on the right side of the operator is called the right operand. The following
list shows the categories of operators that you use within Python:

 ✓ Unary

 ✓ Arithmetic

 ✓ Relational

Understanding Python’s one ternary operator
A ternary operator requires three elements.
Python supports just one such operator, and
you use it to determine the truth value of an
expression. This operator takes the following
form:

TrueValue if Expression else
FalseValue

When the Expression is true, the operator
outputs TrueValue. When the expression is
false, it outputs FalseValue. As an example,
if you type

"Hello" if True else
"Goodbye"

the operator outputs a response of 'Hello'.
However, if you type

"Hello" if False else
"Goodbye"

the operator outputs a response of
'Goodbye'. This is a handy operator for times

when you need to make a quick decision and
don’t want to write a lot of code to do it.

One of the advantages of using Python is that it
normally has more than one way to do things.
Python has an alternative form of this ternary
operator — an even shorter shortcut. It takes
the following form:

(FalseValue, TrueValue)
[Expression]

As before, when Expression is true, the oper­
ator outputs TrueValue; otherwise, it outputs
FalseValue. Notice that the TrueValue
and FalseValue elements are reversed in this
case. An example of this version is

("Hello", "Goodbye")[True]

In this case, the output of the operator is
'Goodbye' because that’s the value in the
TrueValue position. Of the two forms, the first
is a little clearer, while the second is shorter.

97 Chapter 6: Managing Information

 ✓ Logical

 ✓ Bitwise

 ✓ Assignment

 ✓ Membership

 ✓ Identity

Each of these categories performs a specific task. For example, the arithme-
tic operators perform math-based tasks, while relational operators perform
comparisons. The following sections describe the operators based on the
category in which they appear.

Unary
Unary operators require a single variable or expression as input. You often
use these operators as part of a decision-making process. For example, you
might want to find something that isn’t like something else. Table 6-1 shows
the unary operators.

Table 6-1 Python Unary Operators
Operator Description Example
~ Inverts the bits in a number so that

all the 0 bits become 1 bits and vice
versa.

~4 results in a value of –5

- Negates the original value so that
positive becomes negative and vice
versa.

–(–4) results in 4 and –4
results in –4

+ Is provided purely for the sake of
completeness. This operator returns
the same value that you provide as
input.

+4 results in a value of 4

Arithmetic
Computers are known for their capability to perform complex math. However,
the complex tasks that computers perform are often based on much simpler
math tasks, such as addition. Python provides access to libraries that help
you perform complex math tasks, but you can always create your own librar-
ies of math functions using the simple operators found in Table 6-2.

98 Part II: Talking the Talk

Table 6-2 Python Arithmetic Operators
Operator Description Example
+ Adds two values together 5 + 2 = 7

- Subtracts the right operand from the left operand 5 – 2 = 3

* Multiplies the right operand by the left operand 5 * 2 = 10

/ Divides the left operand by the right operand 5 / 2 = 2.5

% Divides the left operand by the right operand and
returns the remainder

5 % 2 = 1

** Calculates the exponential value of the right operand
by the left operand

5 ** 2 = 25

// Performs integer division, in which the left operand
is divided by the right operand and only the whole
number is returned (also called floor division)

5 // 2 = 2

Relational
The relational operators compare one value to another and tell you when the
relationship you’ve provided is true. For example, 1 is less than 2, but 1 is
never greater than 2. The truth value of relations is often used to make deci-
sions in your applications to ensure that the condition for performing a spe-
cific task is met. Table 6-3 describes the relational operators.

Table 6-3 Python Relational Operators
Operator Description Example
== Determines whether two values are equal. Notice that

the relational operator uses two equals signs. A mistake
many developers make is using just one equals sign,
which results in one value being assigned to another.

1 == 2 is
False

!= Determines whether two values are not equal. Some
older versions of Python allowed you to use the <> oper­
ator in place of the != operator. Using the <> operator
results in an error in current versions of Python.

1 != 2 is
True

> Verifies that the left operand value is greater than the
right operand value.

1 > 2 is
False

99 Chapter 6: Managing Information

Operator Description Example

< Verifies that the left operand value is less than the right
operand value.

1 < 2 is
True

>= Verifies that the left operand value is greater than or
equal to the right operand value.

1 >= 2 is
False

<= Verifies that the left operand value is less than or equal
to the right operand value.

1 <= 2 is
True

Logical
The logical operators combine the true or false value of variables or expres-
sions so that you can determine their resultant truth value. You use the logi-
cal operators to create Boolean expressions that help determine whether to
perform tasks. Table 6-4 describes the logical operators.

Table 6-4 Python Logical Operators
Operator Description Example
and Determines whether both operands

are true.
True and True is True

True and False is False

False and True is False

False and False is False

or Determines when one of two operands
is true.

True or True is True

True or False is True

False or True is True

False or False is False

not Negates the truth value of a single
operand. A true value becomes false
and a false value becomes true.

not True is False

not False is True

Bitwise
The bitwise operators interact with the individual bits in a number. For exam-
ple, the number 6 is actually 0b0110 in binary.

100 Part II: Talking the Talk

 If your binary is a little rusty, you can use the handy Binary to Decimal
to Hexadecimal Converter at http://www.mathsisfun.com/binary-
decimal-hexadecimal-converter.html. You need to enable JavaScript
to make the site work.

A bitwise operator would interact with each bit within the number in a spe-
cific way. When working with a logical bitwise operator, a value of 0 counts
as false and a value of 1 counts as true. Table 6-5 describes the bitwise
operators.

Table 6-5 Python Bitwise Operators
Operator Description Example
& (And) Determines whether both individual bits

within two operators are true and sets
the resulting bit to true when they are.

0b1100 & 0b0110
= 0b0100

| (Or) Determines whether either of the indi­
vidual bits within two operators is true
and sets the resulting bit to true when
one of them is.

0b1100 | 0b0110 =
0b1110

^ (Exclusive
or)

Determines whether just one of the indi­
vidual bits within two operators is true
and sets the resulting bit to true when
one is. When both bits are true or both
bits are false, the result is false.

0b1100 ^ 0b0110 =
0b1010

~ (One’s
complement)

Calculates the one’s complement value
of a number.

~0b1100 =
–0b1101

~0b0110 =
–0b0111

<< (Left
shift)

Shifts the bits in the left operand left by
the value of the right operand. All new
bits are set to 0 and all bits that flow off
the end are lost.

0b00110011 << 2 =
0b11001100

>> (Right
shift)

Shifts the bits in the left operand right by
the value of the right operand. All new
bits are set to 0 and all bits that flow off
the end are lost.

0b00110011 >> 2 =
0b00001100

101 Chapter 6: Managing Information

Assignment
The assignment operators place data within a variable. The simple assign-
ment operator appears in previous chapters of the book, but Python offers
a number of other interesting assignment operators that you can use. These
other assignment operators can perform mathematical tasks during the
assignment process, which makes it possible to combine assignment with a
math operation. Table 6-6 describes the assignment operators. For this par-
ticular table, the initial value of MyVar in the Example column is 5.

Table 6-6 Python Assignment Operators
Operator Description Example
= Assigns the value found in the right oper­

and to the left operand.
MyVar = 2 results in
MyVar containing 2

+= Adds the value found in the right operand
to the value found in the left operand and
places the result in the left operand.

MyVar += 2 results
in MyVar contain­
ing 7

-= Subtracts the value found in the right
operand from the value found in the left
operand and places the result in the left
operand.

MyVar ­= 2 results
in MyVar contain­
ing 3

*= Multiplies the value found in the right oper­
and by the value found in the left operand
and places the result in the left operand.

MyVar *= 2 results
in MyVar contain­
ing 10

/= Divides the value found in the left operand
by the value found in the right operand and
places the result in the left operand.

MyVar /= 2 results
in MyVar contain­
ing 2.5

%= Divides the value found in the left operand
by the value found in the right operand and
places the remainder in the left operand.

MyVar %= 2 results
in MyVar contain­
ing 1

**= Determines the exponential value found in
the left operand when raised to the power
of the value found in the right operand and
places the result in the left operand.

MyVar **= 2 results
in MyVar contain­
ing 25

//= Divides the value found in the left operand
by the value found in the right operand and
places the integer (whole number) result in
the left operand.

MyVar //= 2 results
in MyVar contain­
ing 2

102 Part II: Talking the Talk

Membership
The membership operators detect the appearance of a value within a list or
sequence and then output the truth value of that appearance. Think of the
membership operators as you would a search routine for a database. You
enter a value that you think should appear in the database, and the search
routine finds it for you or reports that the value doesn’t exist in the database.
Table 6-7 describes the membership operators.

Table 6-7 Python Membership Operators
Operator Description Example
In Determines whether the value

in the left operand appears in
the sequence found in the right
operand.

“Hello” in “Hello Goodbye”
is True

not in Determines whether the value in
the left operand is missing from
the sequence found in the right
operand.

“Hello” not in “Hello
Goodbye” is False

Identity
The identity operators determine whether a value or expression is of a cer-
tain class or type. You use identity operators to ensure that you’re actually
working with the sort of information that you think you are. Using the identity
operators can help you avoid errors in your application or determine the sort
of processing a value requires. Table 6-8 describes the identity operators.

Table 6-8 Python Identity Operators
Operator Description Example
Is Evaluates to true when the type of the value or

expression in the right operand points to the
same type in the left operand.

type(2) is int
is True

is not Evaluates to true when the type of the value or
expression in the right operand points to a differ­
ent type than the value or expression in the left
operand.

type(2) is not
int is False

103 Chapter 6: Managing Information

Understanding operator precedence
When you create simple statements that contain just one operator, the order
of determining the output of that operator is also simple. However, when you
start working with multiple operators, it becomes necessary to determine
which operator to evaluate first. For example, it’s important to know whether
1 + 2 * 3 evaluates to 7 (where the multiplication is done first) or 9 (where
the addition is done first). An order of operator precedence tells you that the
answer is 7 unless you use parentheses to override the default order. In this
case, (1 + 2) * 3 would evaluate to 9 because the parentheses have a higher
order of precedence than multiplication does. Table 6-9 defines the order of
operator precedence for Python.

Table 6-9 Python Operator Precedence
Operator Description
() You use parentheses to group expressions

and to override the default precedence so
that you can force an operation of lower
precedence (such as addition) to take pre­
cedence over an operation of higher prece­
dence (such as multiplication).

** Exponentiation raises the value of the left
operand to the power of the right operand.

~ + - Unary operators interact with a single vari­
able or expression.

* / % // Multiply, divide, modulo, and floor division.

+ - Addition and subtraction.

>> << Right and left bitwise shift.

& Bitwise AND.

^ | Bitwise exclusive OR and standard OR.

<= < > >= Comparison operators.

== != Equality operators.
= %= /= //= -= += *=
**=

Assignment operators.

Is

is not

Identity operators.

In

not in

Membership operators.

not or and Logical operators.

104 Part II: Talking the Talk

Creating and Using Functions
To manage information properly, you need to organize the tools used to perform
the required tasks. Each line of code that you create performs a specific task,
and you combine these lines of code to achieve a desired result. Sometimes you
need to repeat the instructions with different data, and in some cases your code
becomes so long that it’s hard to keep track of what each part does. Functions
serve as organization tools that keep your code neat and tidy. In addition, func-
tions make it easy to reuse the instructions you’ve created as needed with
different data. This section of the chapter tells you all about functions. More
important, in this section you start creating your first serious applications in
the same way that professional developers do.

Viewing functions as code packages
You go to your closet, open the door, and everything spills out. In fact, it’s an
avalanche, and you’re lucky that you’ve survived. That bowling ball in the
top shelf could have done some severe damage! However, you’re armed with
storage boxes and soon you have everything in the closet in neatly organized
boxes. The shoes go in one box, games in another, and old cards and let-
ters in yet another. After you’re done, you can find anything you want in the
closet without fear of injury. Functions are just like that — they take messy
code and place it in packages that make it easy to see what you have and
understand how it works.

 Commentaries abound on just what functions are and why they’re necessary,
but when you boil down all that text, it comes down to a single idea: Functions
provide a means of packaging code to make it easy to find and access. If you
can think of functions as organizers, you find that working with them is much
easier. For example, you can avoid the problem that many developers have of
stuffing the wrong items in a function. All your functions will have a single pur-
pose, just like those storage boxes in the closet.

Understanding code reusability
You go to your closet, take out pants and shirt, remove the labels, and
put them on. At the end of the day, you take everything off and throw it in
the trash. Hmmm . . . That really isn’t what most people do. Most people
take the clothes off, wash them, and then put them back into the closet
for reuse. Functions are reusable, too. No one wants to keep repeating the
same task; it becomes monotonous and boring. When you create a function,

105 Chapter 6: Managing Information

you define a package of code that you can use over and over to perform the
same task. All you need to do is tell the computer to perform a specific task
by telling it which function to use. The computer faithfully executes each
instruction in the function absolutely every time you ask it to do so.

 When you work with functions, the code that needs services from the func-
tion is named the caller, and it calls upon the function to perform tasks for
it. Much of the information you see about functions refers to the caller. The
caller must supply information to the function, and the function returns
information to the caller.

At one time, computer programs didn’t include the concept of code reusabil-
ity. As a result, developers had to keep reinventing the same code. It didn’t
take long for someone to come up with the idea of functions, though, and the
concept has evolved over the years until functions have become quite flex-
ible. You can make functions do anything you want. Code reusability is a nec-
essary part of applications to

 ✓ Reduce development time

 ✓ Reduce programmer error

 ✓ Increase application reliability

 ✓ Allow entire groups to benefit from the work of one programmer

 ✓ Make code easier to understand

 ✓ Improve application efficiency

In fact, functions do a whole list of things for applications in the form of reus-
ability. As you work through the examples in this book, you see how reus-
ability makes your life significantly easier. If not for reusability, you’d still be
programming by plugging 0s and 1s into the computer by hand.

Defining a function
Creating a function doesn’t require much work. Python tends to make things
fast and easy for you. The following steps show you the process of creating a
function that you can later access:

 1. Open a Python Shell window.

 You see the familiar Python prompt.

 2. Type def Hello(): and press Enter.

106 Part II: Talking the Talk

 This step tells Python to define a function named Hello. The parenthe-
ses are important because they define any requirements for using the
function. (There aren’t any requirements in this case.) The colon at the
end tells Python that you’re done defining the way in which people will
access the function. Notice that the insertion pointer is now indented,
as shown in Figure 6-1. This indentation is a reminder that you must give
the function a task to perform.

Figure 6-1:
Define

the name
of your

function.

 3. Type print(“This is my first Python function!”) and press Enter.

 You should notice two things, as shown in Figure 6-2. First, the insertion
pointer is still indented because IDLE is waiting for you to provide the
next step in the function. Second, Python hasn’t executed the print()
function because it’s part of a function and is not in the main part of the
window.

Figure 6-2:
IDLE is

waiting for
your next

instruction.

 4. Press Enter.

 The function is now complete. You can tell because the insertion point
is now to the left side, as shown in Figure 6-3. In addition, the Python
prompt (>>>) has returned.

107 Chapter 6: Managing Information

Figure 6-3:
The function
is complete,

and IDLE
waits for

you to pro­
vide another

instruction.

Even though this is a really simple function, it demonstrates the pattern
you use when creating any Python function. You define a name, provide any
requirements for using the function (none in this case), and provide a series
of steps for using the function. A function ends when an extra line is added
(you press Enter twice).

 Working with functions in the Edit window is the same as working with them
in the Python Shell window, except that you can save the Edit window content
to disk. This example also appears with the downloadable source code as
FirstFunction.py. Try loading the file into an Edit window using the same
technique you use in the “Using the Edit window” section of Chapter 4.

Accessing functions
After you define a function, you probably want to use it to perform useful
work. Of course, this means knowing how to access the function. In the previ-
ous section, you create a new function named Hello(). To access this func-
tion, you type Hello() and press Enter. Figure 6-4 shows the output you see
when you execute this function.

Figure 6-4:
Whenever

you type
the func­

tion’s name,
you get the
output the

function
provides.

108 Part II: Talking the Talk

Every function you create will provide a similar pattern of usage. You type the
function name, an open parenthesis, any required input, and a close parenthesis;
then you press Enter. In this case, you have no input, so all you type is Hello().
As the chapter progresses, you see other examples for which input is required.

Sending information to functions
The FirstFunction.py example is nice because you don’t have to keep
typing that long string every time you want to say Hello(). However, it’s
also quite limited because you can use it to say only one thing. Functions
should be flexible and allow you to do more than just one thing. Otherwise,
you end up writing a lot of functions that vary by the data they use rather
than the functionality they provide. Using arguments helps you create func-
tions that are flexible and can use a wealth of data.

Understanding arguments
The term argument doesn’t mean that you’re going to have a fight with the
function; it means that you supply information to the function to use in pro-
cessing a request. Perhaps a better word for it would be input, but the term
input has been used for so many other purposes that developers decided to
use something a bit different: argument. Although the purpose of an argu-
ment might not be clear from its name, understanding what it does is rela-
tively straightforward. An argument makes it possible for you to send data
to the function so that the function can use it when performing a task. Using
arguments makes your function more flexible.

The Hello() function is currently inflexible because it prints just one string.
Adding an argument to the function can make it a lot more flexible because
you can send strings to the function to say anything you want. To see how
arguments work, create a new function in the Python Shell window (or open
the Arguments01.py file of the downloadable source; see the Introduction
for the URL). This version of Hello(), Hello2(), requires an argument:

def Hello2(Greeting):
 print(Greeting)

Notice that the parentheses are no longer empty. They contain a word,
Greeting, which is the argument for Hello2(). The Greeting argument is
actually a variable that you can pass to print() in order to see it onscreen.

Sending required arguments
You have a new function, Hello2(). This function requires that you provide
an argument to use it. At least, that’s what you’ve heard so far. Type Hello2()
and press Enter in the Python Shell window. You see an error message, as
shown in Figure 6-5, telling you that Hello2() requires an argument.

109 Chapter 6: Managing Information

Figure 6-5:
You must

supply an
argument
or you get

an error
message.

Not only does Python tell you that the argument is missing, it tells you the
name of the argument as well. Creating a function the way you have done so
far means that you must supply an argument. Type Hello2(“This is an inter-
esting function.”) and press Enter. This time, you see the expected output.
However, you still don’t know whether Hello2() is flexible enough to print
multiple messages. Type Hello2(“Another message...”) and press Enter. You
see the expected output again, as shown in Figure 6-6, so Hello2() is indeed
an improvement over Hello().

Figure 6-6:
Use

Hello2()
to print any

message
you desire.

110 Part II: Talking the Talk

You might easily to assume that Greeting will accept only a string from the
tests you have performed so far. Type Hello2(1234), press Enter, and you see
1234 as the output. Likewise, type Hello2(5 + 5) and press Enter. This time
you see the result of the expression, which is 10.

Sending arguments by keyword
As your functions become more complex and the methods to use them do as
well, you may want to provide a little more control over precisely how you
call the function and provide arguments to it. Up until now, you have posi-
tional arguments, which means that you have supplied values in the order in
which they appear in the argument list for the function definition. However,
Python also has a method for sending arguments by keyword. In this case,
you supply the name of the argument followed by an equals sign (=) and the
argument value. To see how this works, open a Python Shell window and type
the following function (which is also found in the Arguments02.py file):

def AddIt(Value1, Value2):
 print(Value1, " + ", Value2, " = ", (Value1 + Value2))

Notice that the print() function argument includes a list of items to print
and that those items are separated by commas. In addition, the arguments
are of different types. Python makes it easy to mix and match arguments in
this manner.

Time to test AddIt(). Of course, you want to try the function using posi-
tional arguments first, so type AddIt(2, 3) and press Enter. You see the
expected output of 2 + 3 = 5. Now type AddIt(Value2 = 3, Value1 = 2) and
press Enter. Again, you receive the output 2 + 3 = 5 even though the posi-
tion of the arguments has been reversed.

Giving function arguments a default value
Whether you make the call using positional arguments or keyword argu-
ments, the functions to this point have required that you supply a value.
Sometimes a function can use default values when a common value is avail-
able. Default values make the function easier to use and less likely to cause
errors when a developer doesn’t provide an input. To create a default value,
you simply follow the argument name with an equals sign and the default
value. To see how this works, open a Python Shell window and type the fol-
lowing function (which you can also find in the Arguments03.py file):

def Hello3(Greeting = "No Value Supplied"):
 print(Greeting)

111 Chapter 6: Managing Information

This is yet another version of the original Hello() and updated Hello2()
functions, but Hello3() automatically compensates for individuals who
don’t supply a value. When someone tries to call Hello3() without an argu-
ment, it doesn’t raise an error. Type Hello3() and press Enter to see for your-
self. Type Hello3(“This is a string.”) to see a normal response. Lest you think
the function is now unable to use other kinds of data, type Hello3(5) and
press Enter; then Hello3(2 + 7) and press Enter. Figure 6-7 shows the output
from all these tests.

Figure 6-7:
Supply
default

arguments
when possi­
ble to make

your func­
tions easier

to use.

Creating functions with a variable number of arguments
In most cases, you know precisely how many arguments to provide with
your function. It pays to work toward this goal whenever you can because
functions with a fixed number of arguments are easier to troubleshoot later.
However, sometimes you simply can’t determine how many arguments the
function will receive at the outset. For example, when you create a Python
application that works at the command line, the user might provide no argu-
ments, the maximum number of arguments (assuming there is one), or any
number of arguments in between.

Fortunately, Python provides a technique for sending a variable number of
arguments to a function. You simply create an argument that has an asterisk
in front of it, such as *VarArgs. The usual technique is to provide a second
argument that contains the number of arguments passed as an input. Here is
an example (also found in the VarArgs.py file) of a function that can print a
variable number of elements. (Don’t worry too much if you don’t understand it
completely now — you haven’t seen some of these techniques used before.)

112 Part II: Talking the Talk

def Hello4(ArgCount, *VarArgs):
 print("You passed ", ArgCount, " arguments.")
 for Arg in VarArgs:
 print(Arg)

This example uses something called a for loop. You meet this structure in
Chapter 8. For now, all you really need to know is that it takes the arguments
out of VarArgs one at a time, places the individual argument into Arg, and
then prints Arg using print(). What should interest you most is seeing how
a variable number of arguments can work.

After you type the function into a new Python Shell window, type Hello4(1, “A
Test String.”) and press Enter. You should see the number of arguments and the
test string as output — nothing too exiting there. However, now type Hello4(3,
“One”, “Two”, “Three”) and press Enter. As shown in Figure 6-8, the function
handles the variable number of arguments without any problem at all.

Figure 6-8:
Variable

argument
func­

tions can
make your

applica­
tions more

flexible.

Returning information from functions
Functions can display data directly or they can return the data to the caller so
that the caller can do something more with it. In some cases, a function dis-
plays data directly as well as returns data to the caller, but it’s more common
for a function to either display the data directly or to return it to the caller.

113 Chapter 6: Managing Information

Just how functions work depends on the kind of task the function is supposed
to perform. For example, a function that performs a math-related task is more
likely to return the data to the caller than certain other functions.

To return data to a caller, a function needs to include the keyword return,
followed by the data to return. You have no limit on what you can return to
a caller. Here are some types of data that you commonly see returned by a
function to a caller:

 ✓ Values: Any value is acceptable. You can return numbers, such as 1 or 2.5;
strings, such as “Hello There!”; or Boolean values, such as True or False.

 ✓ Variables: The content of any variable works just as well as a direct
value. The caller receives whatever data is stored in the variable.

 ✓ Expressions: Many developers use expressions as a shortcut. For exam-
ple, you can simply return A + B rather than perform the calculation,
place the result in a variable, and then return the variable to the caller.
Using the expression is faster and accomplishes the same task.

 ✓ Results from other functions: You can actually return data from another
function as part of the return of your function.

It’s time to see how return values work. Open a Python Shell window and
type the following code (or open the ReturnValue.py file instead):

def DoAdd(Value1, Value2):
 return Value1 + Value2

This function accepts two values as input and then returns the sum of those
two values. Yes, you could probably perform this task without using a function,
but this is how many functions start. To test this function, type print(“The sum
of 3 + 4 is ”, DoAdd(3, 4)) and press Enter. You see the expected output shown
in Figure 6-9.

Figure 6-9:
Return

values can
make your
functions

even more
useful.

114 Part II: Talking the Talk

Comparing function output
You use functions with return values in a number of ways. For example, the
previous section of this chapter shows how you can use functions to provide
input for another function. You use functions to perform all sorts of tasks.
One of the ways to use functions is for comparison purposes. You can actu-
ally create expressions from them that define a logical output.

To see how this might work, use the DoAdd() function from the previous
 section. Type print(“3 + 4 equals 2 + 5 is ”, (DoAdd(3, 4) == DoAdd(2, 5)))
and press Enter. You see the truth value of the statement that 3 + 4 equals
2 + 5, as shown in Figure 6-10. The point is that functions need not provide
just one use or that you view them in just one way. Functions can make your
code quite versatile and flexible.

Figure 6-10:
Use your

functions to
perform a

wide variety
of tasks.

Getting User Input
Very few applications exist in their own world — that is, apart from the user.
In fact, most applications interact with users in a major way because comput-
ers are designed to serve user needs. To interact with a user, an application
must provide some means of obtaining user input. Fortunately, the most
commonly used technique for obtaining input is also relatively easy to imple-
ment. You simply use the input() function to do it.

115 Chapter 6: Managing Information

 The input() function always outputs a string. Even if a user types a number,
the output from the input() function is a string. This means that if you are
expecting a number, you need to convert it after receiving the input. The
input() function also lets you provide a string prompt. This prompt is dis-
played to tell the user what to provide in the way of information.

The Input01.py file contains an example of using the input() function in a
simple way. Here’s the code for that example:

Name = input("Tell me your name: ")
print("Hello ", Name)

In this case, the input() function asks the user for a name. After the user
types a name and presses Enter, the example outputs a customized greeting
to the user. Try running this example at the command prompt or the Python
Shell window. Figure 6-11 shows typical results when you input John as the
username.

Figure 6-11:
Provide a

username
and see a

greeting as
output.

You can use input() for other kinds of data; all you need is the correct con-
version function. For example, the code in the Input02.py file provides one
technique for performing such a conversion, as shown here:

ANumber = float(input("Type a number: "))
print("You typed: ", ANumber)

When you run this example, the application asks for a numeric input. The call
to float() converts the input to a number. After the conversion, print()
outputs the result. When you run the example using a value such as 5.5, you
obtain the desired result.

116 Part II: Talking the Talk

 It’s important to understand that data conversion isn’t without risk. If you
attempt to type something other than a number, you get an error message, as
shown in Figure 6-12. Chapter 9 helps you understand how to detect and fix
errors before they cause a system crash.

Figure 6-12:
Data con­

version
changes the

input type
to whatever

you need,
but could

cause
errors.

Chapter 7

Making Decisions
In This Chapter
▶ Using the if statement to make simple decisions

▶ Performing more advanced decision making with the if...else statement

▶ Creating multiple decision levels by nesting statements

T
he ability to make a decision, to take one path or another, is an essential
element of performing useful work. Math gives the computer the capability

to obtain useful information. Decisions make it possible to do something with
the information after it’s obtained. Without the capability to make decisions, a
computer would be useless. So any language you use will include the capability
to make decisions in some manner. This chapter explores the techniques that
Python uses to make decisions.

 Think through the process you use when making a decision. You obtain the
actual value of something, compare it to a desired value, and then act accord-
ingly. For example, when you see a signal light and see that it’s red, you com-
pare the red light to the desired green light, decide that the light isn’t green,
and then stop. Most people don’t take time to consider the process they use
because they use it so many times every day. Decision making comes naturally
to humans, but computers must perform the following tasks every time:

 1. Obtain the actual or current value of something.

 2. Compare the actual or current value to a desired value.

 3. Perform an action that corresponds to the desired outcome of the
comparison.

118 Part II: Talking the Talk

Making Simple Decisions
Using the if Statement

The if statement is the easiest method for making a decision in Python. It
simply states that if something is true, Python should perform the steps that
follow. The following sections tell you how you can use the if statement to
make decisions of various sorts in Python. You may be surprised at what this
simple statement can do for you.

Understanding the if statement
You use if statements regularly in everyday life. For example, you may say to
yourself, “If it’s Wednesday, I’ll eat tuna salad for lunch.” The Python if state-
ment is a little less verbose, but it follows precisely the same pattern. Say you
create a variable, TestMe, and place a value of 6 in it, like this:

TestMe = 6

You can then ask the computer to check for a value of 6 in TestMe, like this:

if TestMe == 6:
 print("TestMe does equal 6!")

Every Python if statement begins, oddly enough, with the word if. When
Python sees if, it knows that you want it to make a decision. After the word
if comes a condition. A condition simply states what sort of comparison you
want Python to make. In this case, you want Python to determine whether
TestMe contains the value 6.

 Notice that the condition uses the relational equality operator, ==, and not the
assignment operator, =. A common mistake that developers make is to use the
assignment operator rather than the equality operator. You can see a list of
relational operators in Chapter 6.

The condition always ends with a colon (:). If you don’t provide a colon,
Python doesn’t know that the condition has ended and will continue to look
for additional conditions on which to base its decision. After the colon come
any tasks you want Python to perform. In this case, Python prints a state-
ment saying that TestMe is equal to 6.

119 Chapter 7: Making Decisions

Using the if statement in an application
It’s possible to use the if statement in a number of ways in Python. However,
you immediately need to know about three common ways to use it:

 ✓ Use a single condition to execute a single statement when the condition
is true.

 ✓ Use a single condition to execute multiple statements when the condi-
tion is true.

 ✓ Combine multiple conditions into a single decision and execute one or
more statements when the combined condition is true.

The following sections explore these three possibilities and provide you
with examples of their use. You see additional examples of how to use the
if statement throughout the book because it’s such an important method of
making decisions.

Working with relational operators
A relational operator determines how a value on the left side of an expres-
sion compares to the value on the right side of an expression. After it makes
the determination, it outputs a value of true or false that reflects the
truth value of the expression. For example, 6 == 6 is true, while 5 == 6
is false. Table 6-3 contains a listing of the relational operators. The follow-
ing steps show how to create and use an if statement. This example also
appears with the downloadable source code as SimpleIf1.py.

 1. Open a Python Shell window.

 You see the familiar Python prompt.

 2. Type TestMe = 6 and press Enter.

 This step assigns a value of 6 to TestMe. Notice that it uses the assign-
ment operator and not the equality operator.

 3. Type if TestMe == 6: and press Enter.

 This step creates an if statement that tests the value of TestMe using
the equality operator. You should notice two features of the Python Shell
at this point:

	 •	The	word	if is highlighted in a different color than the rest of the
statement.

	 •	The	next	line	is	automatically	indented.

120 Part II: Talking the Talk

 4. Type print(“TestMe does equal 6!”) and press Enter.

 Notice that Python doesn’t execute the if statement yet. It does indent the
next line. The word print appears in a special color because it’s a function
name. In addition, the text appears in another color to show you that it’s a
string value. Color coding makes it much easier to see how Python works.

 5. Press Enter.

 The Python Shell outdents this next line and executes the if statement, as
shown in Figure 7-1. Notice that the output is in yet another color. Because
TestMe contains a value of 6, the if statement works as expected.

Figure 7-1:
Simple if
statements

can help
your appli­

cation know
what to do

in certain
conditions.

Performing multiple tasks
Sometimes you want to perform more than one task after making a decision.
Python relies on indentation to determine when to stop executing tasks as
part of an if statement. As long as the next line is indented, it’s part of the
if statement. When the next line is outdented, it becomes the first line of
code outside the if block. A code block consists of a statement and the tasks
associated with that statement. The same term is used no matter what kind
of statement you’re working with, but in this case, you’re working with an if
statement that is part of a code block. This example also appears with the
downloadable source code as SimpleIf2.py.

 1. Open a Python Shell window.

 You see the familiar Python prompt.

 2. Type the following code into the window — pressing Enter after
each line:

TestMe = 6
if TestMe == 6:
 print("TestMe does equal 6!")
 print("All done!")

121 Chapter 7: Making Decisions

 Notice that the shell continues to indent lines as long as you continue to
type code. Each line you type is part of the current if statement code
block.

 When working in the shell, you create a block by typing one line of code
after another. If you press Enter twice in a row without entering any text,
the code block is ended, and Python executes the entire code block at
one time.

 3. Press Enter.

 Python executes the entire code block. You see the output shown in
Figure 7-2.

Figure 7-2:
A code

block can
contain mul­
tiple lines of
code — one

for each
task.

Making multiple comparisons using logical operators
So far, the examples have all shown a single comparison. Real life often
requires that you make multiple comparisons to account for multiple require-
ments. For example, when baking cookies, if the timer has gone off and the
edges are brown, it’s time to take the cookies out of the oven.

 In order to make multiple comparisons, you create multiple conditions using
relational operators and combine them using logical operators (see Table 6-4).
A logical operator describes how to combine conditions. For example, you
might say x == 6 and y == 7 as two conditions for performing one or more
tasks. The and keyword is a logical operator that states that both conditions
must be true.

One of the most common uses for making multiple comparisons to deter-
mine when a value is within a certain range. In fact, range checking, the act
of determining whether data is between two values, is an important part of
making your application secure and user friendly. The following steps help

122 Part II: Talking the Talk

you see how to perform this task. In this case, you create a file so that you
can run the application multiple times. This example also appears with the
downloadable source code as SimpleIf3.py.

 1. Open a Python File window.

 You see an editor in which you can type the example code.

 2. Type the following code into the window — pressing Enter after each
line:

Value = int(input("Type a number between 1 and 10: "))

if (Value > 0) and (Value <= 10):
 print("You typed: ", Value)

 The example begins by obtaining an input value. You have no idea what
the user has typed other than that it’s a value of some sort. The use
of the int() function means that the user must type a whole number
(one without a decimal portion). Otherwise, the application will raise
an exception (an error indication; Chapter 9 describes exceptions). This
first check ensures that the input is at least of the correct type.

 The if statement contains two conditions. The first states that Value
must be greater than 0. You could also present this condition as
Value >= 1. The second condition states that Value must be less
than or equal to 10. Only when Value meets both of these conditions
will the if statement succeed and print the value the user typed.

 3. Choose Run➪Run Module.

 You see a Python Shell window open with a prompt to type a number
between 1 and 10.

 4. Type 5 and press Enter.

 The application determines that the number is in the right range and
outputs the message shown in Figure 7-3.

 5. Repeat Steps 3 and 4, but type 22 instead of 5.

 The application doesn’t output anything because the number is in the
wrong range. Whenever you type a value that’s outside the programmed
range, the statements that are part of the if block aren’t executed.

 6. Repeat Steps 3 and 4, but type 5.5 instead of 5.

 Python displays the error message shown in Figure 7-4. Even though
you may think of 5.5 and 5 as both being numbers, Python sees the first
number as a floating-point value and the second as an integer.

123 Chapter 7: Making Decisions

 7. Repeat Steps 3 and 4, but type Hello instead of 5.

 Python displays about the same error message as before. Python doesn’t
differentiate between types of wrong input. It only knows that the input
type is incorrect and therefore unusable.

Figure 7-3:
The applica­
tion verifies
the value is
in the right
range and
outputs a
message.

Figure 7-4:
Typing the

wrong type
of informa­
tion results
in an error
message.

 The best applications use various kinds of range checking to ensure that the
application behaves in a predictable manner. The more predictable an appli-
cation becomes, the less the user thinks about the application and the more
time the user spends on performing useful work. Productive users tend to be
a lot happier than those who constantly fight with their applications.

124 Part II: Talking the Talk

Choosing Alternatives Using
the if...else Statement

Many of the decisions you make in an application fall into a category of
choosing one of two options based on conditions. For example, when looking
at a signal light, you choose one of two options: press on the brake to stop
or press the accelerator to continue. The option you choose depends on the
conditions. A green light signals that you can continue on through the light; a
red light tells you to stop. The following sections describe how Python makes
it possible to choose between two alternatives.

Understanding the if...else statement
With Python, you choose one of two alternatives using the else clause of the
if statement. A clause is an addition to a code block that modifies the way in
which it works. Most code blocks support multiple clauses. In this case, the
else clause enables you to perform an alternative task, which increases the
usefulness of the if statement. Most developers refer to the form of the if
statement that has the else clause included as the if...else statement,
with the ellipsis implying that something happens between if and else.

 Sometimes developers encounter problems with the if...else statement
because they forget that the else clause always executes when the condi-
tions for the if statement aren’t met. It’s important to think about the con-
sequences of always executing a set of tasks when the conditions are false.
Sometimes doing so can lead to unintended consequences.

Using the if...else statement
in an application
The SimpleIf3.py example is a little less helpful than it could be when the
user enters a value that’s outside the intended range. Even entering data of
the wrong type produces an error message, but entering the correct type of
data outside the range tells the user nothing. In this example, you discover
the means for correcting this problem by using an else clause. The following
steps demonstrate just one reason to provide an alternative action when the
condition for an if statement is false. This example also appears with the
downloadable source code as IfElse.py.

125 Chapter 7: Making Decisions

 1. Open a Python File window.

 You see an editor in which you can type the example code.

 2. Type the following code into the window — pressing Enter after
each line:

Value = int(input("Type a number between 1 and 10: "))

if (Value > 0) and (Value <= 10):
 print("You typed: ", Value)
else:
 print("The value you typed is incorrect!")

 As before, the example obtains input from the user and then determines
whether that input is in the correct range. However, in this case, the
else clause provides an alternative output message when the user
enters data outside the desired range.

 Notice that the else clause ends with a colon, just as the if statement
does. Most clauses that you use with Python statements have a colon
associated with them so that Python knows when the clause has ended.
If you receive a coding error for your application, make sure that you
check for the presence of the colon as needed.

 3. Choose Run➪Run Module.

 You see a Python Shell window open with a prompt to type a number
between 1 and 10.

 4. Type 5 and press Enter.

 The application determines that the number is in the right range and
outputs the message shown previously in Figure 7-3.

 5. Repeat Steps 3 and 4, but type 22 instead of 5.

 This time the application outputs the error message shown in Figure 7-5.
The user now knows that the input is outside the desired range and
knows to try entering it again.

Using the if...elif statement
in an application
You go to a restaurant and look at the menu. The restaurant offers eggs, pan-
cakes, waffles, and oatmeal for breakfast. After you choose one of the items,
the server brings it to you. Creating a menu selection requires something
like an if...else statement, but with a little extra oomph. In this case, you
use the elif clause to create another set of conditions. The elif clause is a
combination of the else clause and a separate if statement. The following
steps describe how to use the if...elif statement to create a menu. This
example also appears with the downloadable source code as IfElif.py.

126 Part II: Talking the Talk

Figure 7-5:
It’s always

a good idea
to provide
feedback

for incorrect
input.

 1. Open a Python File window.

 You see an editor in which you can type the example code.

 2. Type the following code into the window — pressing Enter after
each line:

print("1. Red")
print("2. Orange")
print("3. Yellow")
print("4. Green")
print("5. Blue")
print("6. Purple")

Choice = int(input("Select your favorite color: "))

if (Choice == 1):
 print("You chose Red!")
elif (Choice == 2):
 print("You chose Orange!")
elif (Choice == 3):
 print("You chose Yellow!")
elif (Choice == 4):
 print("You chose Green!")
elif (Choice == 5):
 print("You chose Blue!")
elif (Choice == 6):
 print("You chose Purple!")
else:
 print("You made an invalid choice!")

 The example begins by displaying a menu. The user sees a list of choices
for the application. It then asks the user to make a selection, which it
places inside Choice. The use of the int() function ensures that the
user can’t type anything other than a number.

127 Chapter 7: Making Decisions

 After the user makes a choice, the application looks for it in the list of
potential values. In each case, Choice is compared against a particular
value to create a condition for that value. When the user types 1, the
application outputs the message "You chose Red!". If none of the
options is correct, the else clause is executed by default to tell the user
that the input choice is invalid.

 3. Choose Run➪Run Module.

 You see a Python Shell window open with the menu displayed. The appli-
cation asks you to select your favorite color.

 4. Type 1 and press Enter.

 The application displays the appropriate output message, as shown in
Figure 7-6.

 5. Repeat Steps 3 and 4, but type 5 instead of 1.

 The application displays a different output message — the one associ-
ated with the requested color.

 6. Repeat Steps 3 and 4, but type 8 instead of 1.

 The application tells you that you made an invalid choice.

 7. Repeat Steps 3 and 4, but type Red instead of 1.

 The application displays the expected error message, as shown in
Figure 7-7. Any application you create should be able to detect errors
and incorrect inputs. Chapter 9 shows you how to handle errors so that
they’re user friendly.

Figure 7-6:
Menus let

you choose
one option

from a list of
options.

128 Part II: Talking the Talk

Figure 7-7:
Every

application
you create

should
include

some means
of detecting
errant input.

No switch statement?
If you’ve worked with other languages, you
might notice that Python lacks a switch state­
ment (if you haven’t, there is no need to worry
about it with Python). Developers commonly
use the switch statement in other languages to
create menu­based applications. The if...
elif statement is generally used for the same
purpose in Python.

However, the if...elif statement doesn’t
provide quite the same functionality as a switch
statement because it doesn’t enforce the use of
a single variable for comparison purposes. As
a result, some developers rely on Python’s dic­
tionary functionality to stand in for the switch
statement. Chapter 13 describes how to work
with dictionaries.

129 Chapter 7: Making Decisions

Using Nested Decision Statements
The decision-making process often happens in levels. For example, when
you go to the restaurant and choose eggs for breakfast, you have made a
first-level decision. Now the server asks you what type of toast you want
with your eggs. The server wouldn’t ask this question if you had ordered
pancakes, so the selection of toast becomes a second-level decision. When
the breakfast arrives, you decide whether you want to use jelly on your toast.
This is a third-level decision. If you had selected a kind of toast that doesn’t
work well with jelly, you might not have had to make this decision at all. This
process of making decisions in levels, with each level reliant on the decision
made at the previous level, is called nesting. Developers often use nesting
techniques to create applications that can make complex decisions based on
various inputs. The following sections describe several kinds of nesting you
can use within Python to make complex decisions.

Using multiple if or if...else statements
The most commonly used multiple selection technique is a combination of if
and if...else statements. This form of selection is often called a selection
tree because of its resemblance to the branches of a tree. In this case, you
follow a particular path to obtain a desired result. The example in this section
also appears with the downloadable source code as MultipleIfElse.py.

 1. Open a Python File window.

 You see an editor where you can type the example code.

 2. Type the following code into the window — pressing Enter after each
line:

One = int(input("Type a number between 1 and 10: "))
Two = int(input("Type a number between 1 and 10: "))

if (One >= 1) and (One <= 10):
 if (Two >= 1) and (Two <= 10):
 print("Your secret number is: ", One * Two)
 else:
 print("Incorrect second value!")
else:
 print("Incorrect first value!")

 This is simply an extension of the IfElse.py example you see in the
“Using the if...else statement in an application” section of the chapter.
However, notice that the indentation is different. The second if...
else statement is indented within the first if...else statement. The
indentation tells Python that this is a second-level statement.

130 Part II: Talking the Talk

 3. Choose Run➪Run Module.

 You see a Python Shell window open with a prompt to type a number
between 1 and 10.

 4. Type 5 and press Enter.

 The shell asks for another number between 1 and 10.

 5. Type 2 and press Enter.

 You see the combination of the two numbers as output, as shown in
Figure 7-8.

Figure 7-8:
Adding mul­

tiple levels
lets you per­

form tasks
with greater
complexity.

This example has the same input features as the IfElse.py example. For
example, if you attempt to provide a value that’s outside the requested range,
you see an error message. The error message is tailored for either the first or
second input value so that the user knows which value was incorrect.

 Providing specific error messages is always useful because users tend to
become confused and frustrated otherwise. In addition, a specific error mes-
sage helps you find errors in your application much faster.

Combining other types of decisions
It’s possible to use any combination of if, if...else, and if...elif state-
ments to produce a desired outcome. You can nest the code blocks as many
levels deep as needed to perform the required checks. For example, Listing 7-1
shows what you might accomplish for a breakfast menu. This example also
appears with the downloadable source code as MultipleIfElif.py.

131 Chapter 7: Making Decisions

Listing 7-1: Creating a Breakfast Menu

print("1. Eggs")
print("2. Pancakes")
print("3. Waffles")
print("4. Oatmeal")
MainChoice = int(input("Choose a breakfast item: "))

if (MainChoice == 2):
 Meal = "Pancakes"
elif (MainChoice == 3):
 Meal = "Waffles"

if (MainChoice == 1):
 print("1. Wheat Toast")
 print("2. Sour Dough")
 print("3. Rye Toast")
 print("4. Pancakes")
 Bread = int(input("Choose a type of bread: "))

 if (Bread == 1):
 print("You chose eggs with wheat toast.")
 elif (Bread == 2):
 print("You chose eggs with sour dough.")
 elif (Bread == 3):
 print("You chose eggs with rye toast.")
 elif (Bread == 4):
 print("You chose eggs with pancakes.")
 else:
 print("We have eggs, but not that kind of bread.")

elif (MainChoice == 2) or (MainChoice == 3):
 print("1. Syrup")
 print("2. Strawberries")
 print("3. Powdered Sugar")
 Topping = int(input("Choose a topping: "))

 if (Topping == 1):
 print ("You chose " + Meal + " with syrup.")
 elif (Topping == 2):
 print ("You chose " + Meal + " with strawberries.")
 elif (Topping == 3):
 print ("You chose " + Meal + " with powdered

sugar.")
 else:
 print ("We have " + Meal + ", but not that

topping.")

elif (MainChoice == 4):
 print("You chose oatmeal.")

else:
 print("We don't serve that breakfast item!")

132 Part II: Talking the Talk

This example has some interesting features. For one thing, you might assume
that an if...elif statement always requires an else clause. This example
shows a situation that doesn’t require such a clause. You use an if...elif
statement to ensure that Meal contains the correct value, but you have no
other options to consider.

The selection technique is the same as you saw for the previous examples.
A user enters a number in the correct range to obtain a desired result. Three
of the selections require a secondary choice, so you see the menu for that
choice. For example, when ordering eggs, it isn’t necessary to choose a top-
ping, but you do want a topping for pancakes or waffles.

Notice that this example also combines variables and text in a specific way.
Because a topping can apply equally to waffles or pancakes, you need some
method for defining precisely which meal is being served as part of the
output. The Meal variable that the application defines earlier is used as part
of the output after the topping choice is made.

The best way to understand this example is to play with it. Try various menu
combinations to see how the application works. For example, Figure 7-9
shows what happens when you choose a waffle breakfast with a strawberry
topping.

Figure 7-9:
Many appli­
cations rely

on multilevel
menus.

Chapter 8

Performing Repetitive Tasks
In This Chapter
▶ Performing a task a specific number of times

▶ Performing a task until completion

▶ Placing one task loop within another

A
ll the examples in the book so far have performed a series of steps just
one time and then stopped. However, the real world doesn’t work this

way. Many of the tasks that humans perform are repetitious. For example,
the doctor might state that you need to exercise more and tell you to do 100
push-ups each day. If you just do one push-up, you won’t get much benefit
from the exercise and you definitely won’t be following the doctor’s orders.
Of course, because you know precisely how many push-ups to do, you can
perform the task a specific number of times. Python allows the same sort of
repetition using the for statement.

Unfortunately, you don’t always know how many times to perform a task.
For example, consider needing to check a stack of coins for one of extreme
rarity. Taking just the first coin from the top, examining it, and deciding that
it either is or isn’t the rare coin doesn’t complete the task. Instead, you must
examine each coin in turn, looking for the rare coin. Your stack may contain
more than one. Only after you have looked at every coin in the stack can you
say that the task is complete. However, because you don’t know how many
coins are in the stack, you don’t know how many times to perform the task
at the outset. You only know the task is done when the stack is gone. Python
performs this kind of repetition using the while statement.

 Most programming languages call any sort of repeating sequence of events
a loop. The idea is to picture the repetition as a circle, with the code going
round and round executing tasks until the loop ends. Loops are an essential
part of application elements such as menus. In fact, writing most modern
applications without using loops would be impossible.

134 Part II: Talking the Talk

In some cases, you must create loops within loops. For example, to create a
multiplication table, you use a loop within a loop. The inner loop calculates
the column values and the outer loop moves between rows. You see such an
example later in the chapter, so don’t worry too much about understanding
precisely how such things work right now.

Processing Data Using the for Statement
The first looping code block that most developers encounter is the for state-
ment. It’s hard to imagine creating a conventional programming language
that lacks such a statement. In this case, the loop executes a fixed number of
times, and you know the number of times it will execute before the loop even
begins. Because everything about a for loop is known at the outset, for
loops tend to be the easiest kind of loop to use. However, in order to use one,
you need to know how many times to execute the loop. The following sec-
tions describe the for loop in greater detail.

Understanding the for statement
A for loop begins with a for statement. The for statement describes how
to perform the loop. The Python for loop works through a sequence of some
type. It doesn’t matter whether the sequence is a series of letters in a string
or items within a collection. You can even specify a range of values to use by
specifying the range() function. Here’s a simple for statement.

for Letter in "Howdy!":

The statement begins with the keyword for. The next item is a variable that
holds a single element of a sequence. In this case, the variable name is Letter.
The in keyword tells Python that the sequence comes next. In this case, the
sequence is the string "Howdy". The for statement always ends with a colon,
just as the decision-making statements described in Chapter 7 do.

Indented under the for statement are the tasks you want performed within
the for loop. Python considers every following indented statement part of
the code block that composes the for loop. Again, the for loop works just
like the decision-making statements in Chapter 7.

135 Chapter 8: Performing Repetitive Tasks

Creating a basic for loop
The best way to see how a for loop actually works is to create one. In this
case, the example uses a string for the sequence. The for loop processes
each of the characters in the string in turn until it runs out of characters. This
example also appears with the downloadable source code as SimpleFor.py.

 1. Open a Python File window.

 You see an editor in which you can type the example code.

 2. Type the following code into the window — pressing Enter after
each line:

LetterNum = 1

for Letter in "Howdy!":
 print("Letter ", LetterNum, " is ", Letter)
 LetterNum+=1

 The example begins by creating a variable, LetterNum, to track the
number of letters that have been processed. Every time the loop com-
pletes, LetterNum is updated by 1.

 The for statement works through the sequence of letters in the string
"Howdy!". It places each letter, in turn, in Letter. The code that fol-
lows displays the current LetterNum value and its associated character
found in Letter.

 3. Choose Run➪Run Module.

 A Python Shell window opens. The application displays the letter
sequence along with the letter number, as shown in Figure 8-1.

Figure 8-1:
Use the

for loop to
process the
characters

in a string
one at a

time.

136 Part II: Talking the Talk

Controlling execution with
the break statement
Life is often about exceptions to the rule. For example, you might want
an assembly line to produce a number of clocks. However, at some point,
the assembly line runs out of a needed part. If the part isn’t available, the
assembly line must stop in the middle of the processing cycle. The count
hasn’t completed, but the line must be stopped anyway until the missing
part is restocked.

Interruptions also occur in computers. You might be streaming data from an
online source when a network glitch occurs and breaks the connection; the
stream temporarily runs dry, so the application runs out of things to do even
though the set number of tasks isn’t completed.

 The break clause makes breaking out of a loop possible. However, you don’t
simply place the break clause in your code — you surround it with an if
statement that defines the condition for issuing a break. The statement might
say something like this: If the stream runs dry, then break out of the loop.

In this example, you see what happens when the count reaches a certain level
when processing a string. The example is a little contrived in the interest of
keeping things simple, but it reflects what could happen in the real world
when a data element is too long to process (possibly indicating an error con-
dition). This example also appears with the downloadable source code as
ForBreak.py.

 1. Open a Python File window.

 You see an editor where you can type the example code.

 2. Type the following code into the window — pressing Enter after
each line:

Value = input("Type less than 6 characters: ")
LetterNum = 1

for Letter in Value:
 print("Letter ", LetterNum, " is ", Letter)
 LetterNum+=1
 if LetterNum > 6:
 print("The string is too long!")
 break

137 Chapter 8: Performing Repetitive Tasks

 This example builds on the one found in the previous section. However,
it lets the user provide a variable-length string. When the string is longer
than six characters, the application stops processing it.

 The if statement contains the conditional code. When LetterNum is
greater than 6, it means that the string is too long. Notice the second
level of indentation used for the if statement. In this case, the user sees
an error message stating that the string is too long, and then the code
executes a break to end the loop.

 3. Choose Run➪Run Module.

 You see a Python Shell window open with a prompt asking for input.

 4. Type Hello and press Enter.

 The application lists each character in the string, as shown in Figure 8-2.

 5. Perform Steps 3 and 4 again, but type I am too long. instead of Hello.

 The application displays the expected error message and stops process-
ing the string at character 6, as shown in Figure 8-3.

Figure 8-2:
A short

string is
successfully

processed
by the

application.

 This example adds length checking to your repertoire of application data error
checks. Chapter 7 shows how to perform range checks, which ensure that a
value meets specific limits. The length check is necessary to ensure that data,
especially strings, aren’t going to overrun the size of data fields. In addition,
a small input size makes it harder for intruders to perform certain types of
hacks on your system, which makes your system more secure.

138 Part II: Talking the Talk

Figure 8-3:
Long strings

are trun­
cated to

ensure that
they remain

a certain
size.

Controlling execution with
the continue statement
Sometimes you want to check every element in a sequence, but don’t want
to process certain elements. For example, you might decide that you want
to process all the information for every car in a database except brown cars.
Perhaps you simply don’t need the information about that particular color of
car. The break clause simply ends the loop, so you can’t use it in this situa-
tion. Otherwise, you won’t see the remaining elements in the sequence.

 The break clause alternative that many developers use is the continue
clause. As with the break clause, the continue clause appears as part of
an if statement. However, processing continues with the next element in the
sequence rather than ending completely.

139 Chapter 8: Performing Repetitive Tasks

The following steps help you see how the continue clause differs from the
break clause. In this case, the code refuses to process the letter w, but will
process every other letter in the alphabet. This example also appears with
the downloadable source code as ForContinue.py.

 1. Open a Python File window.

 You see an editor in which you can type the example code.

 2. Type the following code into the window — pressing Enter after
each line:

LetterNum = 1

for Letter in "Howdy!":
 if Letter == "w":
 continue
 print("Encountered w, not processed.")
 print("Letter ", LetterNum, " is ", Letter)
 LetterNum+=1

 This example is based on the one found in the “Creating a basic for
loop” section, earlier in this chapter. However, this example adds an if
statement with the continue clause in the if code block. Notice the
print() function that is part of the if code block. You never see this
string printed because the current loop iteration ends immediately.

 3. Choose Run➪Run Module.

 You see a Python Shell window open. The application displays the letter
sequence along with the letter number, as shown in Figure 8-4. However,
notice the effect of the continue clause — the letter w isn’t processed.

Figure 8-4:
Use the

continue
clause

to avoid
processing

specific
elements.

140 Part II: Talking the Talk

Controlling execution with the pass clause
The Python language includes something not commonly found in other lan-
guages: a second sort of continue clause. The pass clause works almost
the same way as the continue clause does, except that it allows completion
of the code in the if code block in which it appears. The following steps use
an example that is precisely the same as the one found in the previous sec-
tion, “Controlling execution with the continue statement,” except that it uses
a pass clause instead. This example also appears with the downloadable
source code as ForPass.py.

 1. Open a Python File window.

 You see an editor in which you can type the example code.

 2. Type the following code into the window — pressing Enter after
each line:

LetterNum = 1

for Letter in "Howdy!":
 if Letter == "w":
 pass
 print("Encountered w, not processed.")
 print("Letter ", LetterNum, " is ", Letter)
 LetterNum+=1

 3. Choose Run➪Run Module.

 You see a Python Shell window open. The application displays the letter
sequence along with the letter number, as shown in Figure 8-5. However,
notice the effect of the pass clause — the letter w isn’t processed. In
addition, the example displays the string that wasn’t displayed for the
continue clause example.

 The continue clause makes it possible to silently bypass specific elements
in a sequence and to avoid executing any additional code for that element.
Use the pass clause when you need to perform some sort of post process-
ing on the element, such as logging the element in an error log, displaying a
message to the user, or handling the problem element in some other way. The
continue and pass clauses both do the same thing, but they’re used in dis-
tinctly different situations.

141 Chapter 8: Performing Repetitive Tasks

Figure 8-5:
Using the
pass
clause
allows

for post
process­
ing of an

unwanted
input.

Controlling execution with
the else statement
Python has another loop clause that you won’t find with other languages: else.
The else clause makes executing code possible even if you have no elements to
process in a sequence. For example, you might need to convey to the user that
there simply isn’t anything to do. In fact, that’s what the following example does.
This example also appears with the downloadable source code as ForElse.py.

 1. Open a Python File window.

 You see an editor in which you can type the example code.

 2. Type the following code into the window — pressing Enter after
each line:

Value = input("Type less than 6 characters: ")
LetterNum = 1

for Letter in Value:
 print("Letter ", LetterNum, " is ", Letter)
 LetterNum+=1
else:
 print("The string is blank.")

142 Part II: Talking the Talk

 This example is based on the one found in the “Creating a basic for loop”
section, earlier in the chapter. However, when a user presses Enter with-
out typing something, the else clause is executed.

 3. Choose Run➪Run Module.

 You see a Python Shell window open and a prompt asking for input.

 4. Type Hello and press Enter.

 The application lists each character in the string, as shown in Figure 8-2.

 5. Repeat Steps 3 and 4. However, simply press Enter instead of entering
any sort of text.

 You see the alternative message shown in Figure 8-6 that tells you the
string is blank.

Figure 8-6:
The else

clause
makes it
possible

to perform
tasks based
on an empty

sequence.

 It’s easy to misuse the else clause because an empty sequence doesn’t always
signify a simple lack of input. An empty sequence could also signal an applica-
tion error or other conditions that need to be handled differently from a simple
omission of data. Make sure you understand how the application works with
data to ensure that the else clause doesn’t end up hiding potential error condi-
tions, rather than making them visible so that they can be fixed.

143 Chapter 8: Performing Repetitive Tasks

Processing Data Using
the while Statement

You use the while statement for situations when you’re not sure how much
data the application will have to process. Instead of instructing Python to
process a static number of items, you use the while statement to tell Python
to continue processing items until it runs out of items. This kind of loop is
useful when you need to perform tasks such as downloading files of unknown
size or streaming data from a source such as a radio station. Any situation in
which you can’t define at the outset how much data the application will pro-
cess is a good candidate for the while statement that is described more fully
in the sections that follow.

Understanding the while statement
The while statement works with a condition rather than a sequence. The
condition states that the while statement should perform a task until the
condition is no longer true. For example, imagine a deli with a number of cus-
tomers standing in front of the counter. The salesperson continues to service
customers until no more customers are left in line. The line could (and proba-
bly will) grow as the other customers are handled, so it’s impossible to know
at the outset how many customers will be served. All the salesperson knows
is that continuing to serve customers until no more are left is important. Here
is how a while statement might look:

while Sum < 5:

The statement begins with the while keyword. It then adds a condition.
In this case, a variable, Sum, must be less than 5 for the loop to continue.
Nothing specifies the current value of Sum, nor does the code define how the
value of Sum will change. The only thing that is known when Python executes
the statement is that Sum must be less than 5 for the loop to continue per-
forming tasks. The statement ends with a colon and the tasks are indented
below the statement.

 Because the while statement doesn’t perform a series of tasks a set number
of times, creating an endless loop is possible, meaning that the loop never
ends. For example, say that Sum is set to 0 when the loop begins, and the
ending condition is that Sum must be less than 5. If the value of Sum never
increases, the loop will continue executing forever (or at least until the com-
puter is shut down). Endless loops can cause all sorts of bizarre problems on
systems, such as slowdowns and even computer freezes, so it’s best to avoid

144 Part II: Talking the Talk

them. You must always provide a method for the loop to end when using a
while loop (contrasted with the for loop, in which the end of the sequence
determines the end of the loop). So, when working with the while statement,
you must perform three tasks:

 1. Create the environment for the condition (such as setting Sum to 0).

 2. State the condition within the while statement (such as Sum < 5).

 3. Update the condition as needed to ensure that the loop eventually ends
(such as adding Sum+=1 to the while code block).

 As with the for statement, you can modify the default behavior of the while
statement. In fact, you have access to the same four clauses to modify the
while statement behavior:

 ✓ break: Ends the current loop.

 ✓ continue: Immediately ends processing of the current element.

 ✓ pass: Ends processing of the current element after completing the state-
ments in the if block.

 ✓ else: Provides an alternative processing technique when conditions
aren’t met for the loop.

Using the while statement
in an application
You can use the while statement in many ways, but this first example is
straightforward. It simply displays a count based on the starting and ending
condition of a variable named Sum. The following steps help you create and
test the example code. This example also appears with the downloadable
source code as SimpleWhile.py.

 1. Open a Python File window.

 You see an editor in which you can type the example code.

 2. Type the following code into the window — pressing Enter after
each line:

Sum = 0

while Sum < 5:
 print(Sum)
 Sum+=1

145 Chapter 8: Performing Repetitive Tasks

 The example code demonstrates the three tasks you must perform when
working with a while loop in a straightforward manner. It begins by set-
ting Sum to 0, which is the first step of setting the condition environment.
The condition itself appears as part of the while statement. The end of
the while code block accomplishes the third step. Of course, the code
displays the current value of Sum before it updates the value of Sum.

 A while statement provides flexibility that you don’t get with a for state-
ment. This example shows a relatively straightforward way to update Sum.
However, you can use any update method required to meet the goals of
the application. Nothing says that you have to update Sum in a specific
manner. In addition, the condition can be as complex as you want it to be.
For example, you can track the current value of three or four variables
if so desired. Of course, the more complex you make the condition, the
more likely it is that you’ll create an endless loop, so you have a practical
limit as to how complex you should make the while loop condition.

 3. Choose Run➪Run Module.

 Python executes the while loop and displays the numeric sequence
shown in Figure 8-7.

Figure 8-7:
The simple
while
loop dis­

plays a
sequence of

numbers.

Nesting Loop Statements
In some cases, you can use either a for loop or a while loop to achieve
the same effect. The manners work differently, but the effect is the same.
In this example, you create a multiplication table generator by nesting a
while loop within a for loop. Because you want the output to look nice,
you use a little formatting as well (Chapter 11 provides you with detailed
instruction in this regard). This example also appears with the download-
able source code as ForElse.py.

146 Part II: Talking the Talk

 1. Open a Python File window.

 You see an editor in which you can type the example code.

 2. Type the following code into the window — pressing Enter after
each line:

X = 1
Y = 1

print ('{:>4}'.format(' '), end= ' ')

for X in range(1, 11):
 print('{:>4}'.format(X), end=' ')

print()

for X in range(1,11):
 print('{:>4}'.format(X), end=' ')
 while Y <= 10:
 print('{:>4}'.format(X * Y), end=' ')
 Y+=1
 print()
 Y=1

 This example begins by creating two variables, X and Y, to hold the row
and column value of the table. X is the row variable and Y is the column
variable.

 To make the table readable, this example must create a heading at the
top and another along the side. When users see a 1 at the top and a 1
at the side, and follow these values to where they intersect in the table,
they can see the value of the two numbers when multiplied.

 The first print() statement adds a space (because nothing appears in
the corner of the table; see Figure 8-8 to more easily follow this discus-
sion). All the formatting statement says is to create a space 4 characters
wide and place a space within it. The {:>4} part of the code determines
the size of the column. The format(' ') function determines what
appears in that space. The end attribute of the print() statement
changes the ending character from a carriage return to a simple space.

 The first for loop displays the numbers 1 through 10 at the top of
the table. The range() function creates the sequence of numbers for
you. When using the range() function, you specify the starting value,
which is 1 in this case, and one more than the ending value, which is
11 in this case.

147 Chapter 8: Performing Repetitive Tasks

 At this point, the cursor is sitting at the end of the heading row. To
move it to the next line, the code issues a print() call with no other
information.

 Even though the next bit of code looks quite complex, you can figure it out
if you look at it a line at a time. The multiplication table shows the values
from 1 * 1 to 10 * 10, so you need ten rows and ten columns to display the
information. The for statement tells Python to create ten rows.

 Look again at Figure 8-8 to note the row heading. The first print()
call displays the row heading value. Of course, you have to format this
information, and the code uses a space of four characters that end with
a space, rather than a carriage return, in order to continue printing infor-
mation in that row.

 The while loop comes next. This loop prints the columns in an indi-
vidual row. The column values are the multiplied values of X * Y. Again,
the output is formatted to take up four spaces. The while loop ends
when Y is updated to the next value using Y+=1.

 Now you’re back into the for loop. The print() statement ends the
current row. In addition, Y must be reset to 1 so that it’s ready for the
beginning of the next row, which begins with 1.

 3. Choose Run➪Run Module.

 You see the multiplication table shown in Figure 8-8.

Figure 8-8:
The multipli­
cation table
is pleasing
to the eye

thanks to its
formatting.

148 Part II: Talking the Talk

Chapter 9

Dealing with Errors
In This Chapter
▶ Defining problems in communication with Python

▶ Understanding error sources

▶ Handling error conditions

▶ Specifying that an error has occurred

▶ Developing your own error indicators

▶ Performing tasks even after an error occurs

M
ost application code of any complexity has errors in it. When your
application suddenly freezes for no apparent reason, that’s an error.

Seeing one of those obscure message dialog boxes is another kind of error.
However, errors can occur that don’t provide you with any sort of notification.
An application might perform the wrong computation on a series of numbers
you provide, resulting in incorrect output that you may never know about
unless someone tells you that something is wrong or you check for the issue
yourself. Errors need not be consistent, either. You may see them on some
occasions and not on others. For example, an error can occur only when the
weather is bad or the network is overloaded. In short, errors occur in all sorts
of situations and for all sorts of reasons. This chapter tells you about all sorts
of errors and what to do when your application encounters them.

It shouldn’t surprise you that errors occur — applications are written by
humans, and humans make mistakes. Most developers call application errors
exceptions, meaning that they’re the exception to the rule. Because excep-
tions do occur in applications, you need to detect and do something about
them whenever possible. The act of detecting and processing an exception is
called error handling or exception handling. In order to properly detect errors,
you need to know about error sources and why errors occur in the first place.
When you do detect the error, you must process it by catching the exception.
Catching an exception means examining it and possibly doing something
about it. So, another part of this chapter is about discovering how to perform
exception handling in your own application.

150 Part II: Talking the Talk

Sometimes your code detects an error in the application. When this hap-
pens, you need to raise or throw an exception. You see both terms used for
the same thing, which simply means that your code encountered an error it
couldn’t handle, so it passed the error information onto another piece of code
to handle (interpret, process, and, with luck, fix the exception). In some cases,
you use custom error message objects to pass on the information. Even
though Python has a wealth of generic message objects that cover most situ-
ations, some situations are special. For example, you might want to provide
special support for a database application, and Python won’t normally cover
that contingency with a generic message object. It’s important to know when
to handle exceptions locally, when to send them to the code that called your
code, and when to create special exceptions so that every part of the applica-
tion knows how to handle the exception — all topics covered by this chapter.

There are also times when you must ensure that your application handles
an exception gracefully, even if that means shutting the application down.
Fortunately, Python provides the finally clause, which always executes,
even when an exception occurs. You can place code to close files or perform
other essential tasks in the code block associated with this clause. Even
though you won’t perform this task all the time, it’s the last topic discussed
in the chapter.

Knowing Why Python Doesn’t
Understand You

Developers often get frustrated with programming languages and computers
because they seemingly go out of their way to cause communication problems.
Of course, programming languages and computers are both inanimate — there
is no desire for anything on the part of either. Programming languages and
 computers also don’t think; they accept whatever the developer has to say
quite literally. Therein lies the problem.

 Neither Python nor the computer will “know what you mean” when you
type instructions as code. Both follow whatever instructions you provide to
the letter and literally as you provide them. You may not have meant to tell
Python to delete a data file unless some absurd condition occurred. However,
if you don’t make the conditions clear, Python will delete the file whether the
condition exists or not. When an error of this sort happens, people commonly
say that the application has a bug in it. Bugs are simply coding errors that you
can remove using a debugger. (A debugger is a special kind of tool that lets you
stop or pause application execution, examine the content of variables, and
generally dissect the application to see what makes it tick.)

151 Chapter 9: Dealing with Errors

Errors occur in many cases when the developer makes assumptions that
simply aren’t true. Of course, this includes assumptions about the application
user, who probably doesn’t care about the extreme level of care you took when
crafting your application. The user will enter bad data. Again, Python won’t
know or care that the data is bad and will process it even when your intent was
to disallow the bad input. Python doesn’t understand the concepts of good or
bad data; it simply processes incoming data according to any rules you set,
which means that you must set rules to protect users from themselves.

Python isn’t proactive or creative — those qualities exist only in the developer.
When a network error occurs or the user does something unexpected, Python
doesn’t create a solution to fix the problem. It only processes code. If you don’t
provide code to handle the error, the application is likely to fail and crash
ungracefully — possibly taking all of the user’s data with it. Of course, the devel-
oper can’t anticipate every potential error situation, either, which is why most
complex applications have errors in them — errors of omission, in this case.

 Some developers out there think they can create bulletproof code, despite
the absurdity of thinking that such code is even possible. Smart developers
assume that some number of bugs will get through the code-screening pro-
cess, that nature and users will continue to perform unexpected actions, and
that even the smartest developer can’t anticipate every possible error condi-
tion. Always assume that your application is subject to errors that will cause
exceptions; that way, you’ll have the mindset required to actually make your
application more reliable.

Considering the Sources of Errors
You might be able to divine the potential sources of error in your applica-
tion by reading tea leaves, but that’s hardly an efficient way to do things.
Errors actually fall into well-defined categories that help you predict (to some
degree) when and where they’ll occur. By thinking about these categories as
you work through your application, you’re far more likely to discover poten-
tial errors sources before they occur and cause potential damage. The two
principle categories are

 ✓ Errors that occur at a specific time

 ✓ Errors that are of a specific type

The following sections discuss these two categories in greater detail. The
overall concept is that you need to think about error classifications in order
to start finding and fixing potential errors in your application before they
become a problem.

152 Part II: Talking the Talk

Classifying when errors occur
Errors occur at specific times. The two major time frames are

 ✓ Compile time

 ✓ Runtime

No matter when an error occurs, it causes your application to misbehave.
The following sections describe each time frame.

Compile time
A compile time error occurs when you ask Python to run the application.
Before Python can run the application, it must interpret the code and put it
into a form that the computer can understand. A computer relies on machine
code that is specific to that processor and architecture. If the instructions
you write are malformed or lack needed information, Python can’t perform
the required conversion. It presents an error that you must fix before the
application can run.

Fortunately, compile-time errors are the easiest to spot and fix. Because the
application won’t run with a compile-time error in place, user never sees this
error category. You fix this sort of error as you write your code.

 The appearance of a compile-time error should tell you that other typos or
omissions could exist in the code. It always pays to check the surrounding
code to ensure that no other potential problems exist that might not show up
as part of the compile cycle.

Runtime
A runtime error occurs after Python compiles the code you write and the com-
puter begins to execute it. Runtime errors come in several different types, and
some are harder to find than others. You know you have a runtime error when
the application suddenly stops running and displays an exception dialog box
or when the user complains about erroneous output (or at least instability).

 Not all runtime errors produce an exception. Some runtime errors cause instabil-
ity (the application freezes), errant output, or data damage. Runtime errors can
affect other applications or create unforeseen damage to the platform on which
the application is running. In short, runtime errors can cause you quite a bit of
grief, depending on precisely the kind of error you’re dealing with at the time.

Many runtime errors are caused by errant code. For example, you can mis-
spell the name of a variable, preventing Python from placing information in
the correct variable during execution. Leaving out an optional but necessary

153 Chapter 9: Dealing with Errors

argument when calling a method can also cause problems. These are exam-
ples of errors of commission, which are specific errors associated with your
code. In general, you can find these kinds of errors using a debugger or by
simply reading your code line by line to check for errors.

Runtime errors can also be caused by external sources not associated with
your code. For example, the user can input incorrect information that the
application isn’t expecting, causing an exception. A network error can make a
required resource inaccessible. Sometimes even the computer hardware has
a glitch that causes a nonrepeatable application error. These are all examples
of errors of omission, from which the application might recover if your appli-
cation has error-trapping code in place. It’s important that you consider both
kinds of runtime errors — errors of commission and omission — when build-
ing your application.

Distinguishing error types
You can distinguish errors by type, that is, by how they’re made. Knowing the
error types helps you understand where to look in an application for poten-
tial problems. Exceptions work like many other things in life. For example,
you know that electronic devices don’t work without power. So, when you
try to turn your television on and it doesn’t do anything, you might look to
ensure that the power cord is firmly seated in the socket.

 Understanding the error types helps you locate errors faster, earlier, and more
consistently, resulting in fewer misdiagnoses. The best developers know that
fixing errors while an application is in development is always easier than fixing
it when the application is in production because users are inherently impa-
tient and want errors fixed immediately and correctly. In addition, fixing an
error earlier in the development cycle is always easier than fixing it when the
application nears completion because less code exists to review.

The trick is to know where to look. With this in mind, Python (and most other
programming languages) breaks errors into the following types:

 ✓ Syntactical

 ✓ Semantic

 ✓ Logical

The following sections examine each of these error types in more detail. I’ve
arranged the sections in order of difficulty, starting with the easiest to find.
A syntactical error is generally the easiest; a logical error is generally the
hardest.

154 Part II: Talking the Talk

Syntactical
Whenever you make a typo of some sort, you create a syntactical error. Some
Python syntactical errors are quite easy to find because the application
simply doesn’t run. The interpreter may even point out the error for you by
highlighting the errant code and displaying an error message. However, some
syntactical errors are quite hard to find. Python is case sensitive, so you may
use the wrong case for a variable in one place and find that the variable isn’t
quite working as you thought it would. Finding the one place where you used
the wrong capitalization can be quite challenging.

 Most syntactical errors occur at compile time and the interpreter points them
out for you. Fixing the error is made easy because the interpreter generally
tells you what to fix, and with considerable accuracy. Even when the inter-
preter doesn’t find the problem, syntactical errors prevent the application
from running correctly, so any errors the interpreter doesn’t find show up
during the testing phase. Few syntactical errors should make it into produc-
tion as long as you perform adequate application testing.

Semantic
When you create a loop that executes one too many times, you don’t gener-
ally receive any sort of error information from the application. The applica-
tion will happily run because it thinks that it’s doing everything correctly, but
that one additional loop can cause all sorts of data errors. When you create
an error of this sort in your code, it’s called a semantic error.

 Semantic errors occur because the meaning behind a series of steps used to
perform a task is wrong — the result is incorrect even though the code appar-
ently runs precisely as it should. Semantic errors are tough to find, and you
sometimes need some sort of debugger to find them. (Chapter 19 provides
a discussion of tools that you can use with Python to perform tasks such as
debugging applications. You can also find blog posts about debugging on my
blog at http://blog.johnmuellerbooks.com.)

Logical
Some developers don’t create a division between semantic and logical errors,
but they are different. A semantic error occurs when the code is essentially
correct but the implementation is wrong (such as having a loop execute once
too often). Logical errors occur when the developer’s thinking is faulty. In
many cases, this sort of error happens when the developer uses a relational
or logical operator incorrectly. However, logical errors can happen in all sorts
of other ways, too. For example, a developer might think that data is always
stored on the local hard drive, which means that the application may behave
in an unusual manner when it attempts to load data from a network drive
instead.

155 Chapter 9: Dealing with Errors

 Logical errors are quite hard to fix because the problem isn’t with the actual
code, yet the code itself is incorrectly defined. The thought process that went
into creating the code is faulty; therefore, the developer who created the error
is less likely to find it. Smart developers use a second pair of eyes to help spot
logical errors. Having a formal application specification also helps because the
logic behind the tasks the application performs is usually given a formal review.

Catching Exceptions
Generally speaking, a user should never see an exception dialog box. Your
application should always catch the exception and handle it before the user
sees it. Of course, the real world is different — users do see unexpected
exceptions from time to time. However, catching every potential exception is
still the goal when developing an application. The following sections describe
how to catch exceptions and handle them.

Understanding the built-in exceptions
Python comes with a host of built­in
exceptions — far more than you might think
possible. You can see a list of these exceptions
at https://docs.python.org/3.3/
library/exceptions.html. The docu­
mentation breaks the exception list down into
categories. Here is a brief overview of the
Python exception categories that you work
with regularly:

 ✓ Base classes: The base classes provide
the essential building blocks (such as the
Exception exception) for other excep­
tions. However, you might actually see
some of these exceptions, such as the
ArithmeticError exception, when
working with an application.

 ✓ Concrete exceptions: Applications can
experience hard errors — errors that are
hard to overcome because there really
isn’t a good way to handle them or they
signal an event that the application must
handle. For example, when a system
runs out of memory, Python generates a
MemoryError exception. Recovering

from this error is hard because it isn’t always
possible to release memory from other uses.
When the user presses an interrupt key
(such as Ctrl+C or Delete), Python gener­
ates a KeyboardInterrupt exception.
The application must handle this exception
before proceeding with any other tasks.

 ✓ OS exceptions: The operating system can
generate errors that Python then passes
them along to your application. For exam­
ple, if your application tries to open a file
that doesn’t exist, the operating system
generates a FileNotFoundError
exception.

 ✓ Warnings: Python tries to warn you about
unexpected events or actions that could
result in errors later. For example, if you
try to inappropriately use a resource,
such as an icon, Python generates a
ResourceWarning exception. It’s
important to remember that this particular
category is a warning and not an actual
error: Ignoring it can cause you woe later,
but you can ignore it.

156 Part II: Talking the Talk

Basic exception handling
To handle exceptions, you must tell Python that you want to do so and then
provide code to perform the handling tasks. You have a number of ways in
which you can perform this task. The following sections start with the sim-
plest method first and then move on to more complex methods that offer
added flexibility.

Handling a single exception
In Chapter 7, the IfElse.py and other examples have a terrible habit of
spitting out exceptions when the user inputs unexpected values. Part of the
solution is to provide range checking. However, range checking doesn’t over-
come the problem of a user typing text such as Hello in place of an expected
numeric value. Exception handling provides a more complex solution to the
problem, as described in the following steps. This example also appears with
the downloadable source code as BasicException1.py.

 1. Open a Python File window.

 You see an editor in which you can type the example code.

 2. Type the following code into the window — pressing Enter after
each line:

try:
 Value = int(input("Type a number between 1 and 10:

"))
except ValueError:
 print("You must type a number between 1 and 10!")
else:

 if (Value > 0) and (Value <= 10):
 print("You typed: ", Value)
 else:
 print("The value you typed is incorrect!")

 The code within the try block has its exceptions handled. In this case,
handling the exception means getting input from the user using the
int(input()) calls. If an exception occurs outside this block, the code
doesn’t handle it. With reliability in mind, the temptation might be to
enclose all the executable code in a try block so that every exception
would be handled. However, you want to make your exception handling
small and specific to make locating the problem easier.

157 Chapter 9: Dealing with Errors

 The except block looks for a specific exception in this case: ValueError.
When the user creates a ValueError exception by typing Hello instead
of a numeric value, this particular exception block is executed. If the
user were to generate some other exception, this except block wouldn’t
handle it.

 The else block contains all the code that is executed when the try
block code is successful (doesn’t generate an exception). The remain-
der of the code is in this block because you don’t want to execute it
unless the user does provide valid input. When the user provides a
whole number as input, the code can then range check it to ensure that
it’s correct.

 3. Choose Run➪Run Module.

 You see a Python Shell window open. The application asks you to type a
number between 1 and 10.

 4. Type Hello and press Enter.

 The application displays an error message, as shown in Figure 9-1.

Figure 9-1:
Typing

the wrong
input type
generates

an error
instead

of an
exception.

 5. Perform Steps 3 and 4 again, but type 5.5 instead of Hello.

 The application generates the same error message, as shown in
Figure 9-1.

 6. Perform Steps 3 and 4 again, but type 22 instead of Hello.

 The application outputs the expected range error message, as shown in
Figure 9-2. Exception handling doesn’t weed out range errors. You must
still check for them separately.

158 Part II: Talking the Talk

Figure 9-2:
Exception

handling
doesn’t

ensure that
the value is

in the cor­
rect range.

 7. Perform Steps 3 and 4 again, but type 7 instead of Hello.

 This time, the application finally reports that you’ve provided a correct
value of 7. Even though it seems like a lot of work to perform this level
of checking, you can’t really be certain that your application is working
correctly without it.

 8. Perform Steps 3 and 4 again, but press Ctrl+C, Cmd+C, or the alterna-
tive for your platform instead of typing anything.

 The application generates a KeyboardInterrupt exception, as shown in
Figure 9-3. Because this exception isn’t handled, it’s still a problem for the
user. You see several techniques for fixing this problem later in the chapter.

Using the except clause without an exception
You can create an exception handling block in Python that’s generic because
it doesn’t look for a specific exception. In most cases, you want to provide a
specific exception when performing exception handling for these reasons:

 ✓ To avoid hiding an exception you didn’t consider when designing the
application

 ✓ To ensure that others know precisely which exceptions your application
will handle

 ✓ To handle the exceptions correctly using specific code for that
exception

159 Chapter 9: Dealing with Errors

Figure 9-3:
The excep­

tion han­
dling in this

example
deals

only with
Value
Error

exceptions.

However, sometimes you may need a generic exception-handling capability,
such as when you’re working with third-party libraries or interacting with
an external service. The following steps demonstrate how to use an except
clause without a specific exception attached to it. This example also appears
with the downloadable source code as BasicException2.py.

 1. Open a Python File window.

 You see an editor in which you can type the example code.

160 Part II: Talking the Talk

 2. Type the following code into the window — pressing Enter after
each line:

try:
 Value = int(input("Type a number between 1 and 10:

"))
except:
 print("You must type a number between 1 and 10!")
else:

 if (Value > 0) and (Value <= 10):
 print("You typed: ", Value)
 else:
 print("The value you typed is incorrect!")

 The only difference between this example and the previous example is
that the except clause doesn’t have the ValueError exception specifi-
cally associated with it. The result is that this except clause will also
catch any other exception that occurs.

 3. Choose Run➪Run Module.

 You see a Python Shell window open. The application asks you to type a
number between 1 and 10.

 4. Type Hello and press Enter.

 The application displays an error message (refer to Figure 9-1).

 5. Perform Steps 3 and 4 again, but type 5.5 instead of Hello.

 The application generates the same error message (again, refer to
Figure 9-1).

 6. Perform Steps 3 and 4 again, but type 22 instead of Hello.

 The application outputs the expected range error message (refer to
Figure 9-2). Exception handling doesn’t weed out range errors. You must
still check for them separately.

 7. Perform Steps 3 and 4 again, but type 7 instead of Hello.

 This time, the application finally reports that you’ve provided a correct
value of 7. Even though it seems like a lot of work to perform this level
of checking, you can’t really be certain that your application is working
correctly without it.

 8. Perform Steps 3 and 4 again, but press Ctrl+C, Cmd+C, or the alterna-
tive for your platform instead of typing anything.

 You see the error message that’s usually associated with input error, as
shown in Figure 9-4. The error message is incorrect, which might con-
fuse users. However, the plus side is that the application didn’t crash,

161 Chapter 9: Dealing with Errors

which means that you won’t lose any data and the application can
recover. Using generic exception handling does have some advantages,
but you must use it carefully.

Figure 9-4:
Generic

exception
handling
traps the

Keyboard
Inter-

rupt
exception.

Working with exception arguments
Most exceptions don’t provide arguments (a list of values that you can
check for additional information). The exception either occurs or it doesn’t.
However, a few exceptions do provide arguments, and you see them used
later in the book. The arguments tell you more about the exception and pro-
vide details that you need to correct it.

 For the sake of completeness, this chapter includes a simple example that
generates an exception with an argument. You can safely skip the remainder of
this section if desired because the information is covered in more detail later
in the book. This example also appears with the downloadable source code as
ExceptionWithArguments.py.

162 Part II: Talking the Talk

 1. Open a Python File window.

 You see an editor in which you can type the example code.

 2. Type the following code into the window — pressing Enter after
each line:

import sys

try:
 File = open('myfile.txt')
except IOError as e:
 print("Error opening file!\r\n" +
 "Error Number: {0}\r\n".format(e.errno) +
 "Error Text: {0}".format(e.strerror))
else:
 print("File opened as expected.")
 File.close();

 This example uses some advanced features. The import statement
obtains code from another file. Chapter 10 tells you how to use this
Python feature.

 The open() function opens a file and provides access to the file through
the File variable. Chapter 15 tells you how file access works. Given that
myfile.txt doesn’t exist in the application directory, the operating
system can’t open it and will tell Python that the file doesn’t exist.

 Trying to open a nonexistent file generates an IOError exception. This
particular exception provides access to two arguments:

	 •	errno: Provides the operating system error number as an integer

	 •	strerror: Contains the error information as a human-readable
string

 The as clause places the exception information into a variable, e, that
you can access as needed for additional information. The except block
contains a print() call that formats the error information into an easily
read error message.

 If you should decide to create the myfile.txt file, the else clause
executes. In this case, you see a message stating that the file opened
normally. The code then closes the file without doing anything with it.

 3. Choose Run➪Run Module.

 You see a Python Shell window open. The application displays the Error
opening file information, as shown in Figure 9-5.

163 Chapter 9: Dealing with Errors

Figure 9-5:
Attempting

to open a
nonexistent

file never
works.

Obtaining a list of exception arguments
The list of arguments supplied with exceptions varies by exception and by what the sender pro­
vides. It isn’t always easy to figure out what you can hope to obtain in the way of additional informa­
tion. One way to handle the problem is to simply print everything using code like this (this example
also appears with the downloadable source code as GetExceptionArguments1.py):

import sys

try:
 File = open('myfile.txt')
except IOError as e:
 for Arg in e.args:
 print(Arg)
else:
 print("File opened as expected.")
 File.close();

The args property always contains a list of the exception arguments in string format. You can
use a simple for loop to print each of the arguments. The only problem with this approach is that
you’re missing the argument names, so you know the output information (which is obvious in this
case), but you don’t know what to call it.

A more complex method of dealing with the issue is to print both the names and the contents of the
arguments. The following code displays both the names and the values of each of the arguments
(this example also appears with the downloadable source as GetExceptionArguments2.py):

import sys

try:
 File = open('myfile.txt')

(continued)

164 Part II: Talking the Talk

Handling multiple exceptions with a single except clause
Most applications can generate multiple exceptions for a single line of code.
This fact demonstrated earlier in the chapter with the BasicException1.
py example. How you handle the multiple exceptions depends on your goals
for the application, the types of exceptions, and the relative skill of your
users. Sometimes when working with a less skilled user, it’s simply easier to
say that the application experienced a nonrecoverable error and then log the
details into a log file in the application directory or a central location.

 Using a single except clause to handle multiple exceptions works only
when a common source of action fulfills the needs of all the exception types.
Otherwise, you need to handle each exception individually. The follow-
ing steps show how to handle multiple exceptions using a single except
clause. This example also appears with the downloadable source code as
MultipleException1.py.

except IOError as e:
 for Entry in dir(e):
 if (not Entry.startswith("_")):
 try:
 print(Entry, " = ", e.__getattribute__(Entry))
 except AttributeError:
 print("Attribute ", Entry, " not accessible.")
else:
 print("File opened as expected.")
 File.close();

In this case, you begin by getting a listing of the attributes associated with the error argument
object using the dir() function. The output of the dir() function is a list of strings containing
the names of the attributes that you can print. Only those arguments that don’t start with an under­
score (_) contain useful information about the exception. However, even some of those entries are
inaccessible, so you must encase the output code in a second try...except block (see the
“Nested exception handling” section, later in the chapter, for details).

The attribute name is easy because it’s contained in Entry. To obtain the value associated with
that attribute, you must use the __getattribute__() function and supply the name of the
attribute you want. When you run this code, you see both the name and the value of each of the attri­
butes supplied with a particular error argument object. In this case, the actual output is as follows:

args = (2, 'No such file or directory')
Attribute characters_written not accessible.
errno = 2
filename = myfile.txt
strerror = No such file or directory
winerror = None
with_traceback = <built-in method with_traceback of
 FileNotFoundError object at 0x0000000003416DC8>

(continued)

165 Chapter 9: Dealing with Errors

 1. Open a Python File window.

 You see an editor in which you can type the example code.

 2. Type the following code into the window — pressing Enter after
each line:

try:
 Value = int(input("Type a number between 1 and 10:

"))
except (ValueError, KeyboardInterrupt):
 print("You must type a number between 1 and 10!")
else:

 if (Value > 0) and (Value <= 10):
 print("You typed: ", Value)
 else:
 print("The value you typed is incorrect!")

 This code is very much like the BasicException1.py. However,
notice that the except clause now sports both a ValueError and a
KeyboardInterrupt exception. In addition, these exceptions appear
within parentheses and are separated by commas.

 3. Choose Run➪Run Module.

 You see a Python Shell window open. The application asks you to type a
number between 1 and 10.

 4. Type Hello and press Enter.

 The application displays an error message (refer to Figure 9-1).

 5. Perform Steps 3 and 4 again, but type 22 instead of Hello.

 The application outputs the expected range error message (refer to
Figure 9-2).

 6. Perform Steps 3 and 4 again, but press Ctrl+C, Cmd+C, or the alterna-
tive for your platform instead of typing anything.

 You see the error message that’s usually associated with error input
(refer to Figure 9-1).

 7. Perform Steps 3 and 4 again, but type 7 instead of Hello.

 This time, the application finally reports that you’ve provided a correct
value of 7.

Handling multiple exceptions with multiple except clauses
When working with multiple exceptions, it’s usually a good idea to place each
exception in its own except clause. This approach allows you to provide
custom handling for each exception and makes it easier for the user to know
precisely what went wrong. Of course, this approach is also a lot more work.

166 Part II: Talking the Talk

The following steps demonstrate how to perform exception handling using
multiple except clauses. This example also appears with the downloadable
source code as MultipleException2.py.

 1. Open a Python File window.

 You see an editor in which you can type the example code.

 2. Type the following code into the window — pressing Enter after
each line:

try:
 Value = int(input("Type a number between 1 and 10:

"))
except ValueError:
 print("You must type a number between 1 and 10!")
except KeyboardInterrupt:
 print("You pressed Ctrl+C!")
else:

 if (Value > 0) and (Value <= 10):
 print("You typed: ", Value)
 else:
 print("The value you typed is incorrect!")

 Notice the use of multiple except clauses in this case. Each except
clause handles a different exception. You can use a combination of
techniques, with some except clauses handling just one exception and
other except clauses handling multiple exceptions. Python lets you use
the approach that works best for the error-handling situation.

 3. Choose Run➪Run Module.

 You see a Python Shell window open. The application asks you to type a
number between 1 and 10.

 4. Type Hello and press Enter.

 The application displays an error message (refer to Figure 9-1).

 5. Perform Steps 3 and 4 again, but type 22 instead of Hello.

 The application outputs the expected range error message (refer to
Figure 9-2).

 6. Perform Steps 3 and 4 again, but press Ctrl+C, Cmd+C, or the alterna-
tive for your platform instead of typing anything.

 The application outputs a specific message that tells the user what went
wrong, as shown in Figure 9-6.

 7. Perform Steps 3 and 4 again, but type 7 instead of Hello.

 This time, the application finally reports that you’ve provided a correct
value of 7.

167 Chapter 9: Dealing with Errors

Figure 9-6:
Using

multiple
except

clauses
makes spe­

cific error
messages

possible.

Handling more specific to less
specific exceptions
One strategy for handling exceptions is to provide specific except
clauses for all known exceptions and generic except clauses to handle
unknown exceptions. You can see the exception hierarchy that Python
uses at https://docs.python.org/3.3/library/exceptions.
html#exception-hierarchy. When viewing this chart, BaseException
is the uppermost exception. Most exceptions are derived from
Exception. When working through math errors, you can use the generic
ArithmeticError or a more specific ZeroDivisionError exception.

Python evaluates except clauses in the order in which they appear in the
source code file. The first clause is examined first, the second clause is exam-
ined second, and so on. The following steps help you examine an example
that demonstrates the importance of using the correct exception order. In
this case, you perform tasks that result in math errors. This example also
appears with the downloadable source code as MultipleException3.py.

168 Part II: Talking the Talk

 1. Open a Python File window.

 You see an editor in which you can type the example code.

 2. Type the following code into the window — pressing Enter after
each line:

try:
 Value1 = int(input("Type the first number: "))
 Value2 = int(input("Type the second number: "))
 Output = Value1 / Value2
except ValueError:
 print("You must type a whole number!")
except KeyboardInterrupt:
 print("You pressed Ctrl+C!")
except ArithmeticError:
 print("An undefined math error occurred.")
except ZeroDivisionError:
 print("Attempted to divide by zero!")
else:
 print(Output)

 The code begins by obtaining two inputs: Value1 and Value2. The first
two except clauses handle unexpected input. The second two except
clauses handle math exceptions, such as dividing by zero. If everything
goes well with the application, the else clause executes, which prints
the result of the operation.

 3. Choose Run➪Run Module.

 You see a Python Shell window open. The application asks you to type
the first number.

 4. Type Hello and press Enter.

 As expected, Python displays the ValueError exception message.
However, it always pays to check for potential problems.

 5. Choose Run➪Run Module again.

 You see a Python Shell window open. The application asks you to type
the first number.

 6. Type 8 and press Enter.

 The application asks you to enter the second number.

169 Chapter 9: Dealing with Errors

 7. Type 0 and press Enter.

 You see the error message for the ArithmeticError exception, as shown
in Figure 9-7. What you should actually see is the ZeroDivisionError
exception because it’s more specific than the ArithmeticError
exception.

Figure 9-7:
The order

in which
Python

processes
exceptions

is important.

 8. Reverse the order of the two exceptions so that they look like this:

except ZeroDivisionError:
 print("Attempted to divide by zero!")
except ArithmeticError:
 print("An undefined math error occurred.")

 9. Perform Steps 5 through 7 again.

 This time, you see the ZeroDivisionError exception message
because the exceptions appear in the correct order.

 10. Perform Steps 5 through 7 again, but type 2 for the second number
instead of 0.

 This time, the application finally reports an output value of 4.0, as
shown in Figure 9-8.

 Notice that the output shown in Figure 9-8 is a floating-point value.
Division results in a floating-point value unless you specify that you want
an integer output by using the floor division operator (//).

170 Part II: Talking the Talk

Figure 9-8:
Providing

usable input
results in
a usable

output.

Nested exception handling
Sometimes you need to place one exception-handling routine within another
in a process called nesting. When you nest exception-handling routines,
Python tries to find an exception handler in the nested level first and then
moves to the outer layers. You can nest exception-handling routines as
deeply as needed to make your code safe.

One of the more common reasons to use a dual layer of exception-handling
code is when you want to obtain input from a user and need to place the input
code in a loop to ensure that you actually get the required information. The fol-
lowing steps demonstrate how this sort of code might work. This example also
appears with the downloadable source code as MultipleException4.py.

 1. Open a Python File window.

 You see an editor in which you can type the example code.

171 Chapter 9: Dealing with Errors

 2. Type the following code into the window — pressing Enter after
each line:

TryAgain = True

while TryAgain:

 try:
 Value = int(input("Type a whole number. "))
 except ValueError:
 print("You must type a whole number!")

 try:
 DoOver = input("Try again (y/n)? ")
 except:
 print("OK, see you next time!")
 TryAgain = False
 else:
 if (str.upper(DoOver) == "N"):
 TryAgain = False

 except KeyboardInterrupt:
 print("You pressed Ctrl+C!")
 print("See you next time!")
 TryAgain = False
 else:
 print(Value)
 TryAgain = False

 The code begins by creating an input loop. Using loops for this type of
purpose is actually quite common in applications because you don’t want
the application to end every time an input error is made. This is a simpli-
fied loop, and normally you create a separate function to hold the code.

 When the loop starts, the application asks the user to type a whole
number. It can be any integer value. If the user types any non-integer
value or presses Ctrl+C, Cmd+C, or another interrupt key combination,
the exception-handling code takes over. Otherwise, the application
prints the value that the user supplied and sets TryAgain to False,
which causes the loop to end.

 A ValueError exception can occur when the user makes a mistake.
Because you don’t know why the user input the wrong value, you have to
ask if the user wants to try again. Of course, getting more input from the
user could generate another exception. The inner try . . . except
code block handles this secondary input.

 Notice the use of the str.upper() function when getting character input
from the user. This function makes it possible to receive y or Y as input
and accept them both. Whenever you ask the user for character input, it’s
a good idea to convert lowercase characters to uppercase so that you can
perform a single comparison (reducing the potential for error).

172 Part II: Talking the Talk

 The KeyboardInterrupt exception displays two messages and then exits
automatically by setting TryAgain to False. The KeyboardInterrupt
occurs only when the user presses a specific key combination designed
to end the application. The user is unlikely to want to continue using the
application at this point.

 3. Choose Run➪Run Module.

 You see a Python Shell window open. The application asks the user to
input a whole number.

 4. Type Hello and press Enter.

 The application displays an error message and asks whether you want
to try again.

 5. Type Y and press Enter.

 The application asks you to input a whole number again, as shown in
Figure 9-9.

Figure 9-9:
Using a

loop means
that the

application
can recover

from the
error.

 6. Type 5.5 and press Enter.

 The application again displays the error message and asks whether you
want to try again.

 7. Press Ctrl+C, Cmd+C, or another key combination to interrupt the
application.

 The application ends, as shown in Figure 9-10. Notice that the message
is the one from the inner exception. The application never gets to the
outer exception because the inner exception handler provides generic
exception handling.

 8. Choose Run➪Run Module.

 You see a Python Shell window open. The application asks the user to
input a whole number.

173 Chapter 9: Dealing with Errors

Figure 9-10:
The inner
exception

handler pro­
vides sec­

ondary input
support.

 9. Press Ctrl+C, Cmd+C, or another key combination to interrupt the
application.

 The application ends, as shown in Figure 9-11. Notice that the message
is the one from the outer exception. In Steps 7 and 9, the user ends the
application by pressing an interrupt key. However, the application uses
two different exception handlers to address the problem.

Figure 9-11:
The outer
exception

handler
provides pri­

mary input
support.

174 Part II: Talking the Talk

Raising Exceptions
So far, the examples in this chapter have reacted to exceptions. Something
happens and the application provides error-handling support for that event.
However, situations arise for which you may not know how to handle an error
event during the application design process. Perhaps you can’t even handle
the error at a particular level and need to pass it up to some other level to
handle. In short, in some situations, your application must generate an excep-
tion. This act is called raising (or sometimes throwing) the exception. The fol-
lowing sections describe common scenarios in which you raise exceptions in
specific ways.

Raising exceptions during
exceptional conditions
The example in this section demonstrates how you raise a simple exception —
that it doesn’t require anything special. The following steps simply create the
exception and then handle it immediately. This example also appears with the
downloadable source code as RaiseException1.py.

 1. Open a Python File window.

 You see an editor in which you can type the example code.

 2. Type the following code into the window — pressing Enter after
each line:

try:
 raise ValueError
except ValueError:
 print("ValueError Exception!")

 You wouldn’t ever actually create code that looks like this, but it shows
you how raising an exception works at its most basic level. In this case,
the raise call appears within a try . . . except block. A basic
raise call simply provides the name of the exception to raise (or throw).
You can also provide arguments as part of the output to provide addi-
tional information.

 Notice that this try . . . except block lacks an else clause
because there is nothing to do after the call. Although you rarely use a
try . . . except block in this manner, you can. You may encounter
situations like this one sometimes and need to remember that adding
the else clause is purely optional. On the other hand, you must add at
least one except clause.

175 Chapter 9: Dealing with Errors

 3. Choose Run➪Run Module.

 You see a Python Shell window open. The application displays the
expected exception text, as shown in Figure 9-12.

Figure 9-12:
Raising

an excep­
tion only
requires
a call to
raise.

Passing error information to the caller
Python provides exceptionally flexible error handling in that you can pass
information to the caller (the code that is calling your code) no matter which
exception you use. Of course, the caller may not know that the information
is available, which leads to a lot of discussion on the topic. If you’re working
with someone else’s code and don’t know whether additional information is
available, you can always use the technique described in the “Obtaining a list
of exception arguments” sidebar earlier in this chapter to find it.

You may have wondered whether you could provide better information when
working with a ValueError exception than with an exception provided
natively by Python. The following steps show that you can modify the output
so that it does include helpful information. This example also appears with
the downloadable source code as RaiseException2.py.

 1. Open a Python File window.

 You see an editor in which you can type the example code.

 2. Type the following code into the window — pressing Enter after
each line:

try:
 Ex = ValueError()
 Ex.strerror = "Value must be within 1 and 10."
 raise Ex
except ValueError as e:
 print("ValueError Exception!", e.strerror)

176 Part II: Talking the Talk

 The ValueError exception normally doesn’t provide an attribute
named strerror (a common name for string error), but you can add it
simply by assigning a value to it as shown. When the example raises the
exception, the except clause handles it as usual but obtains access to
the attributes using e. You can then access the e.strerror member to
obtain the added information.

 3. Choose Run➪Run Module.

 You see a Python Shell window open. The application displays an
expanded ValueError exception, as shown in Figure 9-13.

Figure 9-13:
It’s possible
to add error

informa­
tion to any
exception.

Creating and Using Custom Exceptions
Python provides a wealth of standard exceptions that you should use when-
ever possible. These exceptions are incredibly flexible, and you can even
modify them as needed (within reason) to meet specific needs. For example,
the “Passing error information to the caller” section of this chapter demon-
strates how to modify a ValueError exception to allow for additional data.
However, sometimes you simply must create a custom exception because none
of the standard exceptions will work. Perhaps the exception name just doesn’t
tell the viewer the purpose that the exception serves. You may need a custom
exception for specialized database work or when working with a service.

 The example in this section is going to seem a little complicated for now
because you haven’t worked with classes before. Chapter 14 introduces you to
classes and helps you understand how they work. If you want to skip this sec-
tion until after you read Chapter 14, you can do so without any problem.

177 Chapter 9: Dealing with Errors

The example in this section shows a quick method for creating your own
exceptions. To perform this task, you must create a class that uses an exist-
ing exception as a starting point. To make things a little easier, this example
creates an exception that builds upon the functionality provided by the
ValueError exception. The advantage of using this approach rather than
the one shown in the “Passing error information to the caller” section, the
preceding section in this chapter, is that this approach tells anyone who
follows you precisely what the addition to the ValueError exception is;
additionally, it makes the modified exception easier to use. This example also
appears with the downloadable source code as CustomException.py.

 1. Open a Python File window.

 You see an editor in which you can type the example code.

 2. Type the following code into the window — pressing Enter after
each line:

class CustomValueError(ValueError):
 def __init__(self, arg):
 self.strerror = arg
 self.args = {arg}

try:
 raise CustomValueError("Value must be within 1 and

10.")
except CustomValueError as e:
 print("CustomValueError Exception!", e.strerror)

 This example essentially replicates the functionality of the example
in the “Passing error information to the caller” section of the chapter.
However, it places the same error in both strerror and args so that
the developer has access to either (as would normally happen).

 The code begins by creating the CustomValueError class that uses the
ValueError exception class as a starting point. The __init__() func-
tion provides the means for creating a new instance of that class. Think
of the class as a blueprint and the instance as the building created from
the blueprint.

 Notice that the strerror attribute has the value assigned directly to it,
but args receives it as an array. The args member normally contains
an array of all the exception values, so this is standard procedure, even
when args contains just one value as it does now.

 The code for using the exception is considerably easier than modify-
ing ValueError directly. All you do is call raise with the name of the
exception and the arguments you want to pass, all on one line.

178 Part II: Talking the Talk

 3. Choose Run➪Run Module.

 You see a Python Shell window open. The application displays the letter
sequence, along with the letter number, as shown in Figure 9-14.

Figure 9-14:
Custom

exceptions
can make
your code

easier to
read.

Using the finally Clause
Normally you want to handle any exception that occurs in a way that doesn’t
cause the application to crash. However, sometimes you can’t do anything to
fix the problem, and the application is most definitely going to crash. At this
point, your goal is to cause the application to crash gracefully, which means
closing files so that the user doesn’t lose data and performing other tasks of
that nature. Anything you can do to keep damage to data and the system to a
minimum is an essential part of handling data for a crashing application.

The finally clause is part of the crashing-application strategy. You use this
clause to perform any required last-minute tasks. Normally, the finally
clause is quite short and uses only calls that are likely to succeed without
further problem. It’s essential to close the files, log the user off, and per-
form other required tasks, and then let the application crash before some-
thing terrible happens (such as a total system failure). With this necessity
in mind, the following steps show a simple example of using the finally
clause. This example also appears with the downloadable source code as
ExceptionWithFinally.py.

 1. Open a Python File window.

 You see an editor in which you can type the example code.

179 Chapter 9: Dealing with Errors

 2. Type the following code into the window — pressing Enter after
each line:

import sys

try:
 raise ValueError
 print("Raising an exception.")
except ValueError:
 print("ValueError Exception!")
 sys.exit()
finally:
 print("Taking care of last minute details.")

print("This code will never execute.")

 In this example, the code raises a ValueError exception. The except
clause executes as normal when this happens. The call to sys.exit()
means that the application exits after the exception is handled. Perhaps
the application can’t recover in this particular instance, but the applica-
tion normally ends, which is why the final print() function call won’t
ever execute.

 The finally clause code always executes. It doesn’t matter whether
the exception happens or not. The code you place in this block needs to
be common code that you always want to execute. For example, when
working with a file, you place the code to close the file into this block to
ensure that the data isn’t damaged by remaining in memory rather than
going to disk.

 3. Choose Run➪Run Module.

 You see a Python Shell window open. The application displays the except
clause message and the finally clause message, as shown in Figure 9-15.
The sys.exit() call prevents any other code from executing.

Figure 9-15:
Use the

finally
clause to

ensure spe­
cific actions

take place
before the

application
ends.

180 Part II: Talking the Talk

 4. Comment out the raise ValueError call by preceding it with two
pound signs, like this:

##raise ValueError

 Removing the exception will demonstrate how the finally clause
 actually works.

 5. Save the file to disk to ensure that Python sees the change.

 6. Choose Run➪Run Module.

 You see a Python Shell window open. The application displays a series
of messages, including the finally clause message, as shown in
Figure 9-16. This part of the example shows that the finally clause
always executes, so you need to use it carefully.

Figure 9-16:
It’s essential

to remem­
ber that the
finally

clause
always

executes.

Part III
Performing Common Tasks

 See an example of how you can named arguments in format strings at
www.dummies.com/extras/beginningprogrammingwithpython.

In this part . . .
 ✓ Gain access to Python modules.

 ✓ Slice and dice strings to meet your output needs.

 ✓ Create lists of objects you want to manage.

 ✓ Use collections to organize data efficiently.

 ✓ Develop classes to make code reusable.

Chapter 10

Interacting with Modules
In This Chapter
▶ Organizing your code

▶ Adding code from outside sources to your application

▶ Locating code libraries on disk

▶ Looking at the library code

▶ Obtaining and reading the Python library documentation

T
he examples in this book are small, but the functionality of the resulting
applications is extremely limited as well. Even tiny real-world applica-

tions contain thousands of lines of code. In fact, applications that contain
millions of lines of code are somewhat common. Imagine trying to work
with a file large enough to contain millions of lines of code — you’d never
find anything. In short, you need some method to organize code into small
pieces that are easier to manage, much like the examples in this book. The
Python solution is to place code in separate code groupings called modules.
Commonly used modules that contain source code for generic needs are
called libraries.

 Modules are contained in separate files. In order to use the module, you must
tell Python to grab the file and read it into the current application. The pro-
cess of obtaining code found in external files is called importing. You import a
module or library to use the code it contains. A few examples in the book have
already shown the import statement in use, but this chapter explains the
import statement in detail so that you know how to use it.

As part of the initial setup, Python created a pointer to the general-purpose
libraries that it uses. That’s why you can simply add an import statement
with the name of the library and Python can find it. However, it pays to know
how to locate the files on disk in case you ever need to update them or you
want to add your own modules and libraries to the list of files that Python
can use.

184 Part III: Performing Common Tasks

The library code is self-contained and well documented (at least in most
cases it is). Some developers might feel that they never need to look at the
library code, and they’re right to some degree — you never have to look at
the library code in order to use it. You might want to view the library code,
though, to ensure that you understand how the code works. In addition, the
library code can teach you new programming techniques that you might
not otherwise discover. So, viewing the library code is optional, but it can
be helpful.

The one thing you do need to know how to do is obtain and use the Python
library documentation. This chapter shows you how to obtain and use the
library documentation as part of the application-creation process.

Creating Code Groupings
It’s important to group like pieces of code together to make the code easier
to use, modify, and understand. As an application grows, managing the code
found in a single file becomes harder and harder. At some point, the code
becomes impossible to manage because the file has become too large for
anyone to work with.

 The term code is used broadly in this particular case. Code groupings can
include:

 ✓ Classes

 ✓ Functions

 ✓ Variables

 ✓ Runnable code

The collection of classes, functions, variables, and runnable code within a
module is known as attributes. A module has attributes that you access by
that attribute’s name. Later sections in this chapter discuss precisely how
module access works.

 The runnable code can actually be written in a language other than Python.
For example, it’s somewhat common to find modules that are written in C/C++
instead of Python. The reason that some developers use runnable code is to
make the Python application faster, less resource intensive, and better able to
use a particular platform’s resources. However, using runnable code comes
with the downside of making your application less portable (able to run on
other platforms) unless you have runnable code modules for each platform

185 Chapter 10: Interacting with Modules

that you want to support. In addition, dual-language applications can be
harder to maintain because you must have developers who can speak each of
the computer languages used in the application.

The most common way to create a module is to define a separate file contain-
ing the code you want to group separately from the rest of the application.
For example, you might want to create a print routine that an application
uses in a number of places. The print routine isn’t designed to work on its
own but is part of the application as a whole. You want to separate it because
the application uses it in numerous places and you could potentially use the
same code in another application. The ability to reuse code ranks high on the
list of reasons to create modules.

To make things easier to understand, the examples in this chapter use
a common module. The module doesn’t do anything too amazing, but it
demonstrates the principles of working with modules. Open a Python File
window and create a new file named MyLibrary.py. Type the code found
in Listing 10-1 and save it to disk. (This module also appears with the down-
loadable source code as MyLibrary.py.)

Listing 10-1: A Simple Demonstration Module

def SayHello(Name):
 print("Hello ", Name)
 return

def SayGoodbye(Name):
 print("Goodbye ", Name)
 return

The example code contains two simple functions named SayHello() and
SayGoodbye(). In both cases, you supply a Name to print and the func-
tion prints it onscreen along with a greeting for you. At that point, the
function returns control to the caller. Obviously, you normally create more
complicated functions, but these functions work well for the purposes of
this chapter.

Importing Modules
In order to use a module, you must import it. Python places the module code
inline with the rest of your application in memory — as if you had created
one huge file. Neither file is changed on disk — they’re still separate, but the
way Python views the code is different.

186 Part III: Performing Common Tasks

 You have two ways to import modules. Each technique is used in specific
circumstances:

 ✓ import: You use the import statement when you want to import an
entire module. This is the most common method that developers use
to import modules because it saves time and requires only one line of
code. However, this approach also uses more memory resources than
does the approach of selectively importing the attributes you need,
which the next paragraph describes.

 ✓ from...import: You use the from...import statement when you
want to selectively import individual module attributes. This method
saves resources, but at the cost of complexity. In addition, if you try to
use an attribute that you didn’t import, Python registers an error. Yes,
the module still contains the attribute, but Python can’t see it because
you didn’t import it.

Now that you have a better idea of how to import modules, it’s time to look at
them in detail. The following sections help you work through importing mod-
ules using the two techniques available in Python.

Changing the current Python directory
The directory that Python is using to access
code affects which modules you can load. The
Python library files are always included in the
list of locations that Python can access, but
Python knows nothing of the directory you use
to hold your source code unless you tell it to
look there. The easiest method for accomplish­
ing this task is to change the current Python
directory to point to your code folder using
these steps:

 1 . Open the Python Shell .

 You see the Python Shell window appear.

 2 . Type import os and press Enter .

 This action imports the Python os library.
You need to import this library to change
the directory (the location Python sees on
disk) to the working directory for this book.

 3 . Type os.chdir(“C:\BP4D\Chapter10”) and
press Enter .

 You need to use the directory that contains
the downloadable source or your own proj­
ect files on your local hard drive. The book
uses the default book directory described in
Chapter 4. Python can now use the down­
loadable source code directory to access
modules that you create for this chapter.

187 Chapter 10: Interacting with Modules

Using the import statement
The import statement is the most common method for importing a module
into Python. This approach is fast and ensures that the entire module is ready
for use. The following steps get you started using the import statement.

 1. Open the Python Shell.

 You see the Python Shell window appear.

 2. Change directories to the downloadable source code directory.

 See the instructions found in the “Changing the current Python directory”
sidebar.

 3. Type import MyLibrary and press Enter.

 Python imports the contents of the MyLibrary.py file that you created
in the “Creating Code Groupings” section of the chapter. The entire library
is now ready for use.

 It’s important to know that Python also creates a cache of the module
in the __pycache__ subdirectory. If you look into your source code
directory after you import MyLibrary for the first time, you see the new
__pycache__ directory. If you want to make changes to your module,
you must delete this directory. Otherwise, Python will continue to use
the unchanged cache file instead of your updated source code file.

 4. Type dir(MyLibrary) and press Enter.

 You see a listing of the module contents, which includes the SayHello()
and SayGoodbye() functions, as shown in Figure 10-1. (A discussion of
the other entries appears in the “Viewing the Module Content” section of
the chapter.)

Figure 10-1:
A direc­

tory listing
shows that

Python
imports both

functions
from the
module.

188 Part III: Performing Common Tasks

 5. Type MyLibrary.SayHello(“Josh”) and press Enter.

 The SayHello() function outputs the expected text, as shown in
Figure 10-2.

Figure 10-2:
The Say

Hello()
function

outputs the
expected
greeting.

 Notice that you must precede the attribute name, which is the Say
Hello() function in this case, with the module name, which is
MyLibrary. The two elements are separated by a period. Every
call to a module that you import follows the same pattern.

 6. Type MyLibrary.SayGoodbye(“Sally”) and press Enter.

 The SayGoodbye() function outputs the expected text.

 7. Close the Python Shell.

 The Python Shell window closes.

Using the from...import statement
The from...import statement has the advantage of importing only the
attributes you need from a module. This difference means that the module
uses less memory and other system resources than using the import state-
ment does. In addition, the from...import statement makes the module
a little easier to use because some commands, such as dir(), show less
information, or only the information that you actually need. The point is that
you get only what you want and not anything else. The following steps dem-
onstrate using the from...import statement.

189 Chapter 10: Interacting with Modules

 1. Open the Python Shell.

 You see the Python Shell window appear.

 2. Change directories to the downloadable source code directory.

 See the instructions found in the “Changing the current Python direc-
tory” sidebar.

 3. Type from MyLibrary import SayHello and press Enter.

 Python imports the SayHello() function that you create in the “Creating
Code Groupings” section, earlier in the chapter. Only this specific function
is now ready for use.

 You can still import the entire module, should you want to do so. The
two techniques for accomplishing the task are to create a list of mod-
ules to import (the names can be separated by commas, such as from
MyLibrary import SayHello, SayGoodbye) or to use the asterisk
(*) in place of a specific attribute name. The asterisk acts as a wildcard
character that imports everything.

 4. Type dir(MyLibrary) and press Enter.

 Python displays an error message, as shown in Figure 10-3. Python
imports only the attributes that you specifically request. This means
that the MyLibrary module isn’t in memory — only the attributes that
you requested are in memory.

Figure 10-3:
The

from...
import
statement

imports only
the items
that you

specifically
request.

 5. Type dir(SayHello) and press Enter.

 You see a listing of attributes that are associated with the SayHello()
function, as shown in Figure 10-4. It isn’t important to know how these
attributes work just now, but you’ll use some of them later in the book.

190 Part III: Performing Common Tasks

Figure 10-4:
Use the
dir()
function
to obtain

information
about the

specific
attributes

you import.

 6. Type SayHello(“Angie”) and press Enter.

 The SayHello() function outputs the expected text, as shown in
Figure 10-5.

Figure 10-5:
The Say

Hello()
function

no longer
requires

the module
name.

191 Chapter 10: Interacting with Modules

 When you import attributes using the from...import statement, you
don’t need to precede the attribute name with a module name. This fea-
ture makes the attribute easier to access.

 Using the from...import statement can also cause problems. If two
attributes have the same name, you can import only one of them. The
import statement prevents name collisions, which is important when
you have a large number of attributes to import. In sum, you must exer-
cise care when using the from...import statement.

 7. Type SayGoodbye(“Harold”) and press Enter.

 You imported only the SayHello() function, so Python knows noth-
ing about SayGoodbye() and displays an error message. The selective
nature of the from...import statement can cause problems when you
assume that an attribute is present when it really isn’t.

 8. Close the Python Shell.

 The Python Shell window closes.

Finding Modules on Disk
In order to use the code in a module, Python must be able to locate the
module and load it into memory. The location information is stored as paths
within Python. Whenever you request that Python import a module, Python
looks at all the files in its list of paths to find it. The path information comes
from three sources:

 ✓ Environment variables: Chapter 3 tells you about Python environment
variables, such as PYTHONPATH, that tell Python where to find modules
on disk.

 ✓ Current directory: Earlier in this chapter, you discover that you can
change the current Python directory so that it can locate any modules
used by your application.

 ✓ Default directories: Even when you don’t define any environment
variables and the current directory doesn’t yield any usable modules,
Python can still find its own libraries in the set of default directories that
are included as part of its own path information.

It’s helpful to know the current path information because the lack of a path
can cause your application to fail. The following steps demonstrate how you
can obtain path information:

 1. Open the Python Shell.

 You see the Python Shell window appear.

192 Part III: Performing Common Tasks

 2. Type import sys and press Enter.

 3. Type for p in sys.path: and press Enter.

 Python automatically indents the next line for you. The sys.path
 attribute always contains a listing of default paths.

 4. Type print(p) and press Enter twice.

 You see a listing of the path information, as shown in Figure 10-6. Your
listing may be different from the one shown in Figure 10-6, depending on
your platform, the version of Python you have installed, and the Python
features you have installed.

Figure 10-6:
The sys.

path
attribute

contains a
listing of the

individual
paths for

your system.

The sys.path attribute is reliable but may not always contain every path
that Python can see. If you don’t see a needed path, you can always check in
another place that Python looks for information. The following steps show
how to perform this task:

 1. Type import os and press Enter.

 2. Type os.environ[‘PYTHONPATH’].split(os.pathsep) and press Enter.

 When you have a PYTHONPATH environment variable defined, you see
a list of paths, as shown in Figure 10-7. However, if you don’t have the
environment variable defined, you see an error message instead.

 Notice that both the sys.path and the os.environ['PYTHONPATH']
attributes contain the C:\BP4D\Chapter10 entry in this case.
The sys.path attribute doesn’t include the split() function,

193 Chapter 10: Interacting with Modules

which is why the example uses a for loop with it. However, the os.
environ['PYTHONPATH'] attribute does include the split() func-
tion, so you can use it to create a list of individual paths.

 You must provide split() with a value to look for in splitting a list of
items. The os.pathsep constant (a variable that has one, unchangeable,
defined value) defines the path separator for the current platform so
that you can use the same code on any platform that supports Python.

 3. Close the Python Shell.

 The Python Shell window closes.

Figure 10-7:
You must

request
informa­

tion about
environment

variables
separately.

 You can also add and remove items from sys.path. For example, if you want
to add Chapter 9 to the list of modules, you type sys.path.append("C:\\
BP4D\\Chapter09") and press Enter in the Python Shell window. When
you list the sys.path contents again, you see that the new entry is added.
Likewise, when you want to remove an entry, such as Chapter 9, you type
sys.path.remove("C:\\BP4D\\Chapter09") and press Enter.

Viewing the Module Content
Python gives you several different ways to view module content. The method
that most developers use is to work with the dir() function, which tells you
about the attributes that the module provides.

194 Part III: Performing Common Tasks

Look at Figure 10-1, earlier in the chapter. In addition to the SayGoodbye()
and SayHello() function entries discussed previously, the list has other
entries. These attributes are automatically generated by Python for you.
These attributes perform the following tasks or contain the following
information:

 ✓ __builtins__: Contains a listing of all the built-in attributes that are
accessible from the module. Python adds these attributes automatically
for you.

 ✓ __cached__: Tells you the name and location of the cached file that is
associated with the module. The location information (path) is relative
to the current Python directory.

 ✓ __doc__: Outputs help information for the module, assuming that
you’ve actually filled it in. For example, if you type os.__doc__ and
press Enter, Python will output the help information associated with the
os library.

 ✓ __file__: Tells you the name and location of the module. The location
information (path) is relative to the current Python directory.

 ✓ __initializing__: Determines whether the module is in the process
of initializing itself. Normally this attribute returns a value of False.
This attribute is useful when you need to wait until one module is done
loading before you import another module that depends on it.

 ✓ __loader__: Outputs the loader information for this module. The
loader is a piece of software that gets the module and puts it into
memory so that Python can use it. This is one attribute you rarely (if
ever) use.

 ✓ __name__: Tells you just the name of the module.

 ✓ __package__: This attribute is used internally by the import system
to make it easier to load and manage modules. You don’t need to worry
about this particular attribute.

It may surprise you to find that you can drill down even further into the attri-
butes. Type dir(MyLibrary.SayHello) and press Enter. You see the entries
shown in Figure 10-8.

Some of these entries, such as __name__, also appeared in the module listing.
However, you might be curious about some of the other entries. For example,
you might want to know what __sizeof__ is all about. One way to get addi-
tional information is to type help(“__sizeof__”) and press Enter. You see some
scanty (but useful) help information, as shown in Figure 10-9.

195 Chapter 10: Interacting with Modules

Figure 10-8:
Drill down

as far as
needed to

understand
the modules
that you use

in Python.

Figure 10-9:
Try getting
some help

information
about the
attribute

you want to
know about.

196 Part III: Performing Common Tasks

Python isn’t going to blow up if you try the attribute. Even if the shell does
experience problems, you can always start a new one. So, another way to
check out a module is to simply try the attributes. For example, if you type
MyLibrary.SayHello.__sizeof__() and press Enter, you see the size of the
SayHello() function in bytes, as shown in Figure 10-10.

Figure 10-10:
Using the
attributes

will help you
get a better
feel for how

they work.

Unlike many other programming languages, Python also makes the source
code for its native language libraries available. For example, when you look
into the \Python33\Lib directory, you see a listing of .py files that you
can open in IDLE with no problem at all. Try opening the os.py library that
you use for various tasks in this chapter, and you see the content shown in
Figure 10-11.

197 Chapter 10: Interacting with Modules

Figure 10-11:
Directly
viewing
module

code can
help in

understand­
ing it.

Viewing the content directly can help you discover new programming tech-
niques and better understand how the library works. The more time you
spend working with Python, the better you’ll become at using it to build inter-
esting applications.

 Make sure that you just look at the library code and don’t accidentally change
it. If you accidentally change the code, your applications can stop working.
Worse yet, you can introduce subtle bugs into your application that will
appear only on your system and nowhere else. Always exercise care when
working with library code.

198 Part III: Performing Common Tasks

Using the Python Module Documentation
You can use the doc() function whenever needed to get quick help. However,
you have a better way to study the modules and libraries located in the Python
path — the Python Module Documentation. This feature often appears as
Module Docs in the Python folder on your system. It’s also referred to as
pydoc. Whatever you call it, the Python Module Documentation makes life a
lot easier for developers. The following sections describe how to work with
this feature.

Opening the pydoc application
Pydoc is just another Python application. It actually appears in the
\Python33\Lib directory of your system as pydoc.py. As with any
other .py file, you can open this one with IDLE and study how it works.
You can start it using the Module Docs shortcut that appears in the
Python folder on your system or by using a command at the command
prompt.

The application creates a localized server that works with your browser to
display information about the Python modules and libraries. So, when you
start this application, you see a command (terminal) window open like the
one shown in Figure 10-12.

Accessing pydoc on Windows
The Windows installation of Python has a prob­
lem. When you click Module Docs, nothing
happens. Of course, this is a bit disconcerting
because users are apt to feel that something
is wrong with their systems or with Python
itself. It turns out that the shortcut is faulty. To
overcome this problem, you must create a new
shortcut using the following steps:

 1 . Right-click the Desktop and choose New➪
Shortcut from the context menu .

 You see the Create Shortcut wizard.

 2 . Type C:\Python33\python.exe C:\Python33\
Lib\pydoc.py ­b and click Next .

 This command line starts a copy of the
pydoc server so that you can access
module information.

 3 . Type pydoc and click Finish .

 Windows creates a new shortcut for you.
This shortcut allows you to access the
module help information that currently
doesn’t work with Python 3.3.4 on Windows.

199 Chapter 10: Interacting with Modules

Figure 10-12:
Starting

pydoc
means

opening a
command
(terminal)

window to
start the

server.

 As with any server, your system may prompt you for permissions. For exam-
ple, you may see a warning from your firewall telling you that pydoc is attempt-
ing to access the local system. You need to give pydoc permission to work with
the system so that you can see the information it provides. Any virus detection
that you have installed may need permission to let pydoc continue as well.
Some platforms, such as Windows, may require an elevation in privileges to
run pydoc.

Normally, the server automatically opens a new browser window for you, as
shown in Figure 10-13. This window contains links to the various modules
that are contained on your system, including any custom modules you create
and include in the Python path. To see information about any module, you
can simply click its link.

The command prompt provides you with two commands to control the
server. You simply type the letter associated with the command and press
Enter to activate it. Here are the two commands:

 ✓ b: Starts a new copy of the default browser with the index page loaded.

 ✓ q: Stops the server.

 When you’re done browsing the help information, make sure that you stop
the server by typing q and pressing Enter at the command prompt. Stopping
the server frees any resources it uses and closes any holes you made in your
firewall to accommodate pydoc.

200 Part III: Performing Common Tasks

Figure 10-13:
Your

browser
displays a
number of

links that
appear as
part of the

Index page.

Using the quick-access links
Refer back to Figure 10-13. Near the top of the page, you see three links.
These links provide quick access to the site features. The browser always
begins at the Module Index. If you need to return to this page, simply click
the Module Index link.

The Topics link takes you to the page shown in Figure 10-14. This page con-
tains links for essential Python topics. For example, if you want to know
more about Boolean values, click the BOOLEAN link. The page you see next
describes how Boolean values work in Python. At the bottom of the page are
related links that lead to pages that contain additional helpful information.

The Keywords link takes you to the page shown in Figure 10-15. What you see
is a list of the keywords that Python supports. For example, if you want to
know more about creating for loops, you click the for link.

201 Chapter 10: Interacting with Modules

Figure 10-14:
The Topics
page tells
you about
essential

Python
topics, such

as how
Boolean

values work.

Figure 10-15:
The

Keywords
page

contains
a listing of
keywords

that Python
supports.

202 Part III: Performing Common Tasks

Typing a search term
The pages also include two text boxes near the top. The first has a Get button
next to it and the second has a Search button next to it. When you type a
search term in the first text box and click Get, you see the documentation for
that particular module or attribute. Figure 10-16 shows what you see when
you type print and click Get.

Figure 10-16:
Using Get

obtains
specific

information
about a

search term.

When you type a search term in the second text box and click Search, you
see all the topics that could relate to that search term. Figure 10-17 shows
typical results when you type print and click Search. In this case, you click a
link, such as calendar, to see additional information.

203 Chapter 10: Interacting with Modules

Figure 10-17:
Using

Search
obtains a

list of topics
about a

search term.

Viewing the results
The results you get when you view a page depends on the topic. Some topics
are brief, such as the one shown in Figure 10-16 for print. However, other
topics are extensive. For example, if you were to click the calendar link in
Figure 10-17, you would see a significant amount of information, as shown in
Figure 10-18.

In this particular case, you see related module information, error information,
functions, data, and all sorts of additional information about the calendar
printing functions. The amount of information you see depends partly on the
complexity of the topic and partly on the amount of information the devel-
oper provided with the module. For example, if you were to select MyLibrary
from the Module Index page, you would see only a list of functions and no
documentation at all.

204 Part III: Performing Common Tasks

Figure 10-18:
Some pages

contain
extensive

information.

Chapter 11

Working with Strings
In This Chapter
▶ Considering the string difference

▶ Using special characters in strings

▶ Working with single characters

▶ Performing string-specific tasks

▶ Finding what you need in a string

▶ Modifying the appearance of string output

Y
our computer doesn’t understand strings. It’s a basic fact. Computers
understand numbers, not letters. When you see a string on the com-

puter screen, the computer actually sees a series of numbers. However,
humans understand strings quite well, so applications need to be able to
work with them. Fortunately, Python makes working with strings relatively
easy. It translates the string you understand into the numbers the computer
understands, and vice versa.

In order to make strings useful, you need to be able to manipulate them. Of
course, that means taking strings apart and using just the pieces you need
or searching the string for specific information. This chapter describes how
you can build strings using Python, dissect them as needed, and use just
the parts you want after you find what’s required. String manipulation is an
important part of applications because humans depend on computers per-
forming that sort of work for them (even though the computer has no idea of
what a string is).

After you have the string you want, you need to present it to the user in an eye-
pleasing manner. The computer doesn’t really care how it presents the string, so
often you get the information, but it lacks pizzazz. In fact, it may be downright
difficult to read. Knowing how to format strings so that they look nice onscreen
is important because users need to see information in a form they understand.
By the time you complete this chapter, you know how to create, manipulate,
and format strings so that the user sees precisely the right information.

206 Part III: Performing Common Tasks

Understanding That Strings
Are Different

Most aspiring developers (and even a few who have written code for a
long time) really have a hard time understanding that computers truly do
only understand 0s and 1s. Even larger numbers are made up of 0s and 1s.
Comparisons take place with 0s and 1s. Data is moved using 0s and 1s. In
short, strings don’t exist for the computer (and numbers just barely exist).
Although grouping 0s and 1s to make numbers is relatively easy, strings are
a lot harder because now you’re talking about information that the computer
must manipulate as numbers but present as characters.

 There are no strings in computer science. Strings are made up of characters,
and individual characters are actually numeric values. When you work with
strings in Python, what you’re really doing is creating an assembly of charac-
ters that the computer sees as numeric values. That’s why the following sec-
tions are so important. They help you understand why strings are so special.
Understanding this material will save you a lot of headaches later.

Defining a character using numbers
To create a character, you must first define a relationship between that
character and a number. More important, everyone must agree that when
a certain number appears in an application and is viewed as a character by
that application, the number is translated into a specific character. One of
the most common ways to perform this task is to use the American Standard
Code for Information Interchange (ASCII). Python uses ASCII to translate the
number 65 to the letter A. The chart at http://www.asciitable.com/
shows the various numeric values and their character equivalents.

 Every character you use must have a different numeric value assigned to
it. The letter A uses a value of 65. To create a lowercase a, you must assign
a different number, which is 97. The computer views A and a as completely
 different characters, even though people view them as uppercase and lower-
case versions of the same character.

The numeric values used in this chapter are in decimal. However, the com-
puter still views them as 0s and 1s. For example, the letter A is really the
value 01000001 and the letter a is really the value 01100001. When you see an
A onscreen, the computer sees a binary value instead.

207 Chapter 11: Working with Strings

 Having just one character set to deal with would be nice. However, not every-
one could agree on a single set of numeric values to equate with specific
characters. Part of the problem is that ASCII doesn’t support characters used
by other languages; also, it lacks the capability to translate special characters
into an onscreen presentation. In fact, character sets abound. You can see a
number of them at http://www.i18nguy.com/unicode/codepages.
html. Click one of the character set entries to see how it assigns specific
numeric values to each character. Most characters sets do use ASCII as a
starting point.

Using characters to create strings
Python doesn’t make you jump through hoops to create strings. However,
the term string should actually give you a good idea of what happens. Think
about beads or anything else you might string. You place one bead at a time
onto the string. Eventually you end up with some type of ornamentation —
perhaps a necklace or tree garland. The point is that these items are made up
of individual beads.

The same concept used for necklaces made of beads holds true for strings
in computers. When you see a sentence, you understand that the sentence
is made up of individual characters that are strung together by the program-
ming language you use. The language creates a structure that holds the indi-
vidual characters together. So, the language, not the computer, knows that
so many numbers in a row (each number being represented as a character)
defines a string such as a sentence.

 You may wonder why it’s important to even know how Python works with
characters. The reason is that many of the functions and special features that
Python provides work with individual characters, and it’s important to know
that Python sees the individual characters. Even though you see a sentence,
Python sees a specific number of characters.

Unlike most programming languages, strings can use either single quotes
or double quotes. For example, “Hello There!” with double quotes is a
string, as is ‘Hello There!’ with single quotes. Python also supports triple
double and single quotes that let you create strings spanning multiple lines.
The following steps help you create an example that demonstrates some
of the string features that Python provides. This example also appears
with the downloadable source code as BasicString.py.

 1. Open a Python File window.

 You see an editor in which you can type the example code.

208 Part III: Performing Common Tasks

 2. Type the following code into the window — pressing Enter after each
line:

print('Hello There (Single Quote)!')
print("Hello There (Double Quote)!")
print("""This is a multiple line
string using triple double quotes.
You can also use triple single quotes.""")

 Each of the three print() function calls demonstrates a different prin-
ciple in working with strings. It’s equally acceptable to enclose the string
in either single or double quotes. When you use a triple quote (either
single or double), the text can appear on multiple lines.

 3. Choose Run➪Run Module.

 You see a Python Shell window open. The application outputs the text.
Notice that the multiline text appears on three lines (see Figure 11-1),
just as it does in the source code file, so this is a kind of formatting. You
can use multiline formatting to ensure that the text breaks where you
want it to onscreen.

Figure 11-1:
Strings

consist of
individual

characters
that are

linked
together.

Creating Stings with Special Characters
Some strings include special characters. These characters are different from
the alphanumeric and punctuation characters that you’re used to using. In
fact, they fall into these categories:

 ✓ Control: An application requires some means of determining that a par-
ticular character isn’t meant to be displayed but rather to control the
display. All the control movements are based on the insertion pointer, the

209 Chapter 11: Working with Strings

line you see when you type text on the screen. For example, you don’t
see a tab character. The tab character provides a space between two
elements, and the size of that space is controlled by a tab stop. Likewise,
when you want to go to the next line, you use a carriage return (which
returns the insertion pointer to the beginning of the line) and linefeed
(which places the insertion pointer on the next line) combination.

 ✓ Accented: Characters that have accents, such as the acute (‘), grave (`),
circumflex (^), umlaut or diaeresis (¨), tilde (~), or ring ()̊, represent
special spoken sounds, in most cases. You must use special characters
to create alphabetical characters with these accents included.

 ✓ Drawing: It’s possible to create rudimentary art with some characters. You
can see examples of the box-drawing characters at http://jrgraphix.
net/r/Unicode/2500-257F. Some people actually create art using ASCII
characters as well (http://www.asciiworld.com/).

 ✓ Typographical: A number of typographical characters, such as the
pilcrow (¶),are used when displaying certain kinds of text onscreen,
especially when the application acts as an editor.

 ✓ Other: Depending on the character set you use, the selection of characters
is nearly endless. You can find a character for just about any need. The
point is that you need some means of telling Python how to present these
special characters.

A common need when working with strings, even strings from simple console
applications, is control characters. With this in mind, Python provides escape
sequences that you use to define control characters directly (and a special
escape sequence for other characters).

 An escape sequence literally escapes the common meaning of a letter, such as
a, and gives it a new meaning (such as the ASCII bell or beep). The combina-
tion of the backslash (\) and a letter (such as a) is commonly viewed as a
single letter by developers — an escape character or escape code. Table 11-1
provides an overview of these escape sequences.

Table 11-1 Python Escape Sequences
Escape
Sequence

Meaning

\newline Ignored

\\ Backslash (\)

\’ Single quote (‘)

\" Double quote (")
(continued)

210 Part III: Performing Common Tasks

Escape
Sequence

Meaning

\a ASCII Bell (BEL)

\b ASCII Backspace (BS)

\f ASCII Formfeed (FF)

\n ASCII Linefeed (LF)

\r ASCII Carriage Return (CR)

\t ASCII Horizontal Tab (TAB)

\uhhhh Unicode character (a specific kind of character set with
broad appeal across the world) with a hexadecimal value that
replaces hhhh

\v ASCII Vertical Tab (VT)

\ooo ASCII character with octal numeric value that replaces ooo
\xhh ASCII character with hexadecimal value that replaces hh

The best way to see how the escape sequences work is to try them. The
following steps help you create an example that tests various escape
sequences so that you can see them in action. This example also appears
with the downloadable source code as SpecialCharacters.py.

 1. Open a Python File window.

 You see an editor in which you can type the example code.

 2. Type the following code into the window — pressing Enter after
each line:

print("Part of this text\r\nis on the next line.")
print("This is an A with a grave accent: \xC0.")
print("This is a drawing character: \u2562.")
print("This is a pilcrow: \266.")
print("This is a division sign: \xF7.")

 The example code uses various techniques to achieve the same end — to
create a special character. Of course, you use control characters directly,
as shown in the first line. Many special letters are accessible using a
hexadecimal number that has two digits (as in the second and fifth lines).
However, some require that you rely on Unicode numbers (which always
require four digits), as shown in the third line. Octal values use three
digits and have no special character associated with them, as shown in
the fourth line.

Table 11-1 (continued)

211 Chapter 11: Working with Strings

 3. Choose Run➪Run Module.

 You see a Python Shell window open. The application outputs the
expected text and special characters, as shown in Figure 11-2.

 The Python shell uses a standard character set across platforms, so
the Python Shell should use the same special characters no matter
which platform you test. However, when creating your application,
make sure to test it on various platforms to see how the application will
react. A character set on one platform may use different numbers for
special characters than another platform does. In addition, user selec-
tion of character sets could have an impact on how special characters
displayed by your application appear. Always make sure that you test
special character usage completely.

Figure 11-2:
Use special
characters
as needed
to present

special
information
or to format
the output.

Selecting Individual Characters
Earlier in the chapter, you discover that strings are made up of individual
characters. They are, in fact, just like beads on a necklace — with each bead
being an individual element of the whole string.

Python makes it possible to access individual characters in a string. This
is an important feature because you can use it to create new strings that
contain only part of the original. In addition, you can combine strings to
create new results. The secret to this feature is the square bracket. You place
a square bracket with a number in it after the name of the variable. Here’s
an example:

MyString = "Hello World"
print(MyString[0])

212 Part III: Performing Common Tasks

 In this case, the output of the code is the letter H. Python strings are zero-
based, which means they start with the number 0 and proceed from there.
For example, if you were to type print(MyString[1]), the output would be
the letter e.

You can also obtain a range of characters from a string. Simply provide the
beginning and ending letter count separated by a colon in the square brackets.
For example, print(MyString[6:11]) would output the word World. The
output would begin with letter 7 and end with letter 12 (remember that the
index is zero based).

The following steps demonstrate some basic tasks that you can perform
using Python’s character-selection technique. This example also appears
with the downloadable source code as Characters.py.

 1. Open a Python File window.

 You see an editor in which you can type the example code.

 2. Type the following code into the window — pressing Enter after
each line.

String1 = "Hello World"
String2 = "Python is Fun!"

print(String1[0])
print(String1[0:5])
print(String1[:5])
print(String1[6:])

String3 = String1[:6] + String2[:6]
print(String3)

print(String2[:7]*5)

 The example begins by creating two strings. It then demonstrates vari-
ous methods for using the index on the first string. Notice that you can
leave out the beginning or ending number in a range if you want to work
with the remainder of that string.

 The next step is to combine two substrings. In this case, the code com-
bines the beginning of String1 with the beginning of String2 to create
String3.

 The use of the + sign to combine two strings is called concatenation. It’s
one of the handier operators to remember when you’re working with
strings in an application.

 The final step is to use a Python feature called repetition. You use repetition
to make a number of copies of a string or substring.

213 Chapter 11: Working with Strings

 3. Choose Run➪Run Module.

 You see a Python Shell window open. The applications outputs a series
of substrings and string combinations, as shown in Figure 11-3.

Figure 11-3:
You can

select
individual

pieces of a
string.

Slicing and Dicing Strings
Working with ranges of characters provides some degree of flexibility, but
it doesn’t provide you with the capability to actually manipulate the string
content or discover anything about it. For example, you might want to
change the characters to uppercase or determine whether the string contains
all letters. Fortunately, Python has functions that help you perform tasks of
this sort. Here are the most commonly used functions:

 ✓ capitalize(): Capitalizes the first letter of a string.

 ✓ center(width, fillchar=" "): Centers a string so that it fits within
the number of spaces specified by width. If you supply a character for
fillchar, the function uses that character. Otherwise, center() uses
spaces to create a string of the desired width.

 ✓ expandtabs(tabsize=8): Expands tabs in a string by replacing the
tab with the number of spaces specified by tabsize. The function
defaults to 8 spaces per tab when tabsize isn’t provided.

 ✓ isalnum(): Returns True when the string has at least one character
and all characters are alphanumeric (letters or numbers).

 ✓ isalpha(): Returns True when the string has at least one character
and all characters are alphabetic (letters only).

 ✓ isdecimal(): Returns True when a Unicode string contains only
decimal characters.

214 Part III: Performing Common Tasks

 ✓ isdigit(): Returns True when a string contains only digits (numbers
and not letters).

 ✓ islower(): Returns True when a string has at least one alphabetic
character and all alphabetic characters are in lowercase.

 ✓ isnumeric(): Returns True when a Unicode string contains only
numeric characters.

 ✓ isspace(): Returns True when a string contains only whitespace char-
acters (which includes spaces, tabs, carriage returns, linefeeds, form
feeds, and vertical tabs, but not the backspace).

 ✓ istitle(): Returns True when a string is cased for use as a title, such
as Hello World. However, the function requires that even little words
have the title case. For example, Follow a Star returns False, even
though it’s properly cased, but Follow A Star returns True.

 ✓ isupper(): Returns True when a string has at least one alphabetic
character and all alphabetic characters are in uppercase.

 ✓ join(seq): Creates a string in which the base string is separated in
turn by each character in seq in a repetitive fashion. For example, if
you start with MyString = "Hello" and type print(MyString.
join("!*!")), the output is !Hello*Hello!.

 ✓ len(string): Obtains the length of string.

 ✓ ljust(width, fillchar=" "): Left justifies a string so that it fits
within the number of spaces specified by width. If you supply a charac-
ter for fillchar, the function uses that character. Otherwise, ljust()
uses spaces to create a string of the desired width.

 ✓ lower(): Converts all uppercase letters in a string to lowercase letters.

 ✓ lstrip(): Removes all leading whitespace characters in a string.

 ✓ max(str): Returns the character that has the maximum numeric value
in str. For example, a would have a larger numeric value than A.

 ✓ min(str): Returns the character that has the minimum numeric value
in str. For example, A would have a smaller numeric value than a.

 ✓ rjust(width, fillchar=" "): Right justifies a string so that it fits
within the number of spaces specified by width. If you supply a charac-
ter for fillchar, the function uses that character. Otherwise, rjust()
uses spaces to create a string of the desired width.

 ✓ rstrip(): Removes all trailing whitespace characters in a string.

 ✓ split(str=" ", num=string.count(str)): Splits a string into sub-
strings using the delimiter specified by str (when supplied). The default is
to use a space as a delimiter. Consequently, if your string contains A Fine
Day, the output would be three substrings consisting of A, Fine, and Day.
You use num to define the number of substrings to return. The default is to
return every substring that the function can produce.

215 Chapter 11: Working with Strings

 ✓ splitlines(num=string.count('\n')): Splits a string that
contains newline (\n) characters into individual strings. Each break
occurs at the newline character. The output has the newline characters
removed. You can use num to specify the number of strings to return.

 ✓ strip(): Removes all leading and trailing whitespace characters
in a string.

 ✓ swapcase(): Inverts the case for each alphabetic character in a string.

 ✓ title(): Returns a string in which the initial letter in each word is in
uppercase and all remaining letters in the word are in lowercase.

 ✓ upper(): Converts all lowercase letters in a string to uppercase letters.

 ✓ zfill (width): Returns a string that is left-padded with zeros so that
the resulting string is the size of width. This function is designed for
use with strings containing numeric values. It retains the original sign
information (if any) supplied with the number.

Playing with these functions a bit can help you understand them better.
The following steps create an example that demonstrates some of the tasks
you can perform using these functions. This example also appears with the
downloadable source code as Functions.py.

 1. Open a Python File window.

 You see an editor in which you can type the example code.

 2. Type the following code into the window — pressing Enter after
each line:

MyString = " Hello World "

print(MyString.upper())

print(MyString.strip())
print(MyString.center(21, "*"))
print(MyString.strip().center(21, "*"))

print(MyString.isdigit())
print(MyString.istitle())

print(max(MyString))

print(MyString.split())
print(MyString.split()[0])

 The code begins by creating MyString, which includes spaces before
and after the text so that you can see how space-related functions work.
The initial task is to convert all the characters to uppercase.

216 Part III: Performing Common Tasks

 Removing extra space is a common task in application development.
The strip() function performs this task well. The center() function
lets you add padding to both the left and right side of a string so that it
consumes a desired amount of space. When you combine the strip()
and center() functions, the output is different from when you use the
center() function alone.

 You can combine functions to produce a desired result. Python executes
each of the functions one at a time from left to right. The order in which
the functions appear will affect the output, and developers commonly
make the mistake of putting the functions in the wrong order. If your
output is different from what you expected, try changing the function
order.

 Some functions work on the string as an input rather than on the string
instance. The max() function falls into this category. If you had typed
MyString.max(), Python would have displayed an error. The bulleted
list that appears earlier in this section shows which functions require
this sort of string input.

 When working with functions that produce a list as an output, you can
access an individual member by providing an index to it. The example
shows how to use split() to split the string into substrings. It then
shows how to access just the first substring in the list. You find out more
about working with lists in Chapter 12.

 3. Choose Run➪Run Module.

 You see a Python Shell window open. The application outputs a number
of modified strings, as shown in Figure 11-4.

Figure 11-4:
Using

functions
makes string

manipu­
lation a

lot more
flexible.

217 Chapter 11: Working with Strings

Locating a Value in a String
There are times when you need to locate specific information in a string. For
example, you may want to know whether a string contains the word Hello in
it. One of the essential purposes behind creating and maintaining data is to
be able to search it later to locate specific bits of information. Strings are no
different — they’re most useful when you can find what you need quickly and
without any problems. Python provides a number of functions for searching
strings. Here are the most commonly used functions:

 ✓ count(str, beg= 0, end=len(string)): Counts how many times
str occurs in a string. You can limit the search by specifying a beginning
index using beg or an ending index using end.

 ✓ endswith(suffix, beg=0, end=len(string)): Returns True
when a string ends with the characters specified by suffix. You can
limit the check by specifying a beginning index using beg or an ending
index using end.

 ✓ find(str, beg=0, end=len(string)): Determines whether str
occurs in a string and outputs the index of the location. You can limit
the search by specifying a beginning index using beg or a ending index
using end.

 ✓ index(str, beg=0, end=len(string)): Provides the same function-
ality as find(), but raises an exception when str isn’t found.

 ✓ replace(old, new [, max]): Replaces all occurrences of the char-
acter sequence specified by old in a string with the character sequence
specified by new. You can limit the number of replacements by specifying
a value for max.

 ✓ rfind(str, beg=0, end=len(string)): Provides the same function-
ality as find(), but searches backward from the end of the string instead
of the beginning.

 ✓ rindex(str, beg=0, end=len(string)): Provides the same function-
ality as index(), but searches backward from the end of the string instead
of the beginning.

 ✓ startswith(prefix, beg=0, end=len(string)): Returns True
when a string begins with the characters specified by prefix. You can
limit the check by specifying a beginning index using beg or an ending
index using end.

Finding the data that you need is an essential programming task — one that
is required no matter what kind of application you create. The following steps
help you create an example that demonstrates the use of search functionality
within strings. This example also appears with the downloadable source code
as SearchString.py.

218 Part III: Performing Common Tasks

 1. Open a Python File window.

 You see an editor in which you can type the example code.

 2. Type the following code into the window — pressing Enter after
each line:

SearchMe = "The apple is red and the berry is blue!"

print(SearchMe.find("is"))
print(SearchMe.rfind("is"))

print(SearchMe.count("is"))

print(SearchMe.startswith("The"))
print(SearchMe.endswith("The"))

print(SearchMe.replace("apple", "car")
 .replace("berry", "truck"))

 The example begins by creating SearchMe, a string with two instances of
the word is. The two instances are important because they demonstrate
how searches differ depending on where you start. When using find(),
the example starts from the beginning of the string. By contrast,
rfind() starts from the end of the string.

 Of course, you won’t always know how many times a certain set of
characters appears in a string. The count() function lets you determine
this value.

 Depending on the kind of data you work with, sometimes the data is
heavily formatted and you can use a particular pattern to your advan-
tage. For example, you can determine whether a particular string (or
substring) ends or begins with a specific sequence of characters. You
could just as easily use this technique to look for a part number.

 The final bit of code replaces apple with car and berry with truck. Notice
the technique used to place the code on two lines. In some cases, your
code will need to appear on multiple lines to make it more readable.

 3. Choose Run➪Run Module.

 You see a Python Shell window open. The application displays the
output shown in Figure 11-5. Notice especially that the searches
returned different indexes based on where they started in the string.
Using the correct function when performing searches is essential to
ensure that you get the results you expected.

219 Chapter 11: Working with Strings

Figure 11-5:
Typing

the wrong
input type
generates

an error
instead

of an
exception.

Formatting Strings
You can format strings in a number of ways using Python. The main emphasis
of formatting is to present the string in a form that is both pleasing to the
user and easy to understand. Formatting doesn’t mean adding special fonts
or effects in this case, but refers merely to the presentation of the data. For
example, the user might want a fixed-point number rather than a decimal
number as output.

You have quite a few ways to format strings and you see a number of them as
the book progresses. However, the focus of most formatting is the format()
function. You create a formatting specification as part of the string and then
use the format() function to add data to that string. A format specification
may be as simple as two curly brackets {} that specify a placeholder for
data. You can number the placeholder to create special effects. For example,
{0} would contain the first data element in a string. When the data elements
are numbered, you can even repeat them so that the same data appears more
than once in the string.

The formatting specification follows a colon. When you want to create just
a formatting specification, the curly brackets contain just the colon and
whatever formatting you want to use. For example, {:f} would create
a fixed-point number as output. If you want to number the entries, the
number that precedes the colon: {0:f} creates a fixed-point number output
for data element one. The formatting specification follows this form, with the
italicized elements serving as placeholders here:

[[fill]align][sign][#][0][width][,][.precision][type]

220 Part III: Performing Common Tasks

The specification at https://docs.python.org/3/library/string.
html provides you with the in-depth details, but here’s an overview of what
the various entries mean:

 ✓ fill: Defines the fill character used when displaying data that is too small
to fit within the assigned space.

 ✓ align: Specifies the alignment of data within the display space. You can
use these alignments:

 •	<: Left aligned

 •	>: Right aligned

 •	^: Centered

 •	=: Justified

 ✓ sign: Determines the use of signs for the output:

 •	+: Positive numbers have a plus sign and negative numbers have a
minus sign.

 •	-: Negative numbers have a minus sign.

 •	<space>: Positive numbers are preceded by a space and negative
numbers have a minus sign.

 ✓ #: Specifies that the output should use the alternative display format for
numbers. For example, hexadecimal numbers will have a 0x prefix added
to them.

 ✓ 0: Specifies that the output should be sign aware and padded with zeros
as needed to provide consistent output.

 ✓ width: Determines the full width of the data field (even if the data won’t
fit in the space provided).

 ✓ ,: Specifies that numeric data should have commas as a thousands
separator.

 ✓ .precision: Determines the number of characters after the decimal point.

 ✓ type: Specifies the output type, even if the input type doesn’t match.
The types are split into three groups:

 •	String: Use an s or nothing at all to specify a string.

 •	Integer: The integer types are as follows: b (binary); c (character);
d (decimal); o (octal); x (hexadecimal with lowercase letters);
X (hexadecimal with uppercase letters); and n (locale-sensitive
decimal that uses the appropriate characters for the thousands
separator).

221 Chapter 11: Working with Strings

 •	Floating point: The floating-point types are as follows: e (exponent
using a lowercase e as a separator); E (exponent using an upper-
case E as a separator); f (lowercase fixed point); F (uppercase fixed
point); g (lowercase general format); G (uppercase general format);
n (local-sensitive general format that uses the appropriate charac-
ters for the decimal and thousands separators); and % (percentage).

The formatting specification elements must appear in the correct order or
Python won’t know what to do with them. If you specify the alignment before
the fill character, Python displays an error message rather than performing
the required formatting. The following steps help you see how the formatting
specification works and demonstrate the order you need to follow in using
the various formatting specification criteria. This example also appears with
the downloadable source code as Formatted.py.

 1. Open a Python File window.

 You see an editor in which you can type the example code.

 2. Type the following code into the window — pressing Enter after
each line:

Formatted = "{:d}"
print(Formatted.format(7000))

Formatted = "{:,d}"
print(Formatted.format(7000))

Formatted = "{:^15,d}"
print(Formatted.format(7000))

Formatted = "{:*^15,d}"
print(Formatted.format(7000))

Formatted = "{:*^15.2f}"
print(Formatted.format(7000))

Formatted = "{:*>15X}"
print(Formatted.format(7000))

Formatted = "{:*<#15x}"
print(Formatted.format(7000))

Formatted = "A {0} {1} and a {0} {2}."
print(Formatted.format("blue", "car", "truck"))

222 Part III: Performing Common Tasks

 The example starts simply with a field formatted as a decimal value.
It then adds a thousands separator to the output. The next step is to
make the field wider than needed to hold the data and to center the data
within the field. Finally, the field has an asterisk added to pad the output.

 Of course, there are other data types in the example. The next step is
to display the same data in fixed-point format. The example also shows
the output in both uppercase and lowercase hexadecimal format. The
uppercase output is right aligned and the lowercase output is left aligned.

 Finally, the example shows how you can use numbered fields to your
advantage. In this case, it creates an interesting string output that
repeats one of the input values.

 3. Choose Run➪Run Module.

 You see a Python Shell window open. The application outputs data in
various forms, as shown in Figure 11-6.

Figure 11-6:
Use

formatting to
present data

in precisely
the form you

want.

Chapter 12

Managing Lists
In This Chapter
▶ Defining why lists are important

▶ Generating lists

▶ Looking through lists

▶ Working with list items sequentially

▶ Changing list content

▶ Locating specific information in lists

▶ Putting list items in order

▶ Using the Counter object to your advantage

A lot of people lose sight of the fact that most programming techniques
are based on the real world. Part of the reason is that programmers

often use terms that other people don’t to describe these real-world objects.
For example, most people would call a place to store something a box or a
cupboard — but programmers insist on using the term variable. Lists are dif-
ferent. Everyone makes lists and uses them in various ways to perform an
abundance of tasks. In fact, you’re probably surrounded by lists of various
sorts where you’re sitting right now as you read this book. So, this chapter is
about something you already use quite a lot. The only difference is that you
need to think of lists in the same way Python does.

You may read that lists are hard to work with. The reason that some people
find working with lists difficult is that they’re not used to actually thinking
about the lists they create. When you create a list, you simply write items
down in whatever order makes sense to you. Sometimes you rewrite the list
when you’re done to put it in a specific order. In other cases, you use your
finger as a guide when going down the list to make looking through it easier.
The point is that everything you normally do with lists is also doable within
Python. The difference is that you must now actually think about what you’re
doing in order to make Python understand what you want done.

224 Part III: Performing Common Tasks

Lists are incredibly important in Python. This chapter introduces you to the
concepts used to create, manage, search, and print lists (among other tasks).
When you complete the chapter, you can use lists to make your Python appli-
cations more robust, faster, and more flexible. In fact, you’ll wonder how you
ever got along without using lists in the past. The important thing to keep in
mind is that you have already used lists most of your life. There really isn’t
any difference now except that you must now think about the actions that
you normally take for granted when managing your own lists.

Organizing Information in an Application
People create lists to organize information and make it easier to access and
change. You use lists in Python for the same reason. In many situations, you
really do need some sort of organizational aid to hold data. For example, you
might want to create a single place to look for days of the week or months
of the year. The names of these items would appear in a list, much as they
would if you needed to commit them to paper in the real world. The following
sections describe lists and how they work in more detail.

Defining organization using lists
The Python specification defines a list as a kind of sequence. Sequences
simply provide some means of allowing multiple data items to exist together
in a single storage unit, but as separate entities. Think about one of those
large mail holders you see in apartment buildings. A single mail holder con-
tains a number of small mailboxes, each of which can contain mail. Python
supports other kinds of sequences as well (Chapter 13 discusses a number of
these sequences):

 ✓ Tuples

 ✓ Dictionaries

 ✓ Stacks

 ✓ Queues

 ✓ Deques

 Of all the sequences, lists are the easiest to understand and are the most
directly related to a real-world object. Working with lists helps you become
better able to work with other kinds of sequences that provide greater func-
tionality and improved flexibility. The point is that the data is stored in a
list much as you would write it on a piece of paper — one item comes after

225 Chapter 12: Managing Lists

another, as shown in Figure 12-1. The list has a beginning, a middle, and an
end. As shown in the figure, the items are numbered. (Even if you might not
normally number them in real life, Python always numbers the items for you.)

Figure 12-1:
A list is

simply a
sequence

of items,
much as

you would
write on a

notepad.

Understanding how computers view lists
The computer doesn’t view lists in the same way that you do. It doesn’t have
an internal notepad and use a pen to write on it. A computer has memory.
The computer stores each item in a list in a separate memory location, as
shown in Figure 12-2. The memory is contiguous, so as you add new items,
they’re added to the next location in memory.

Figure 12-2:
Each item

added to a
list takes the
next position

in memory.

In many respects, the computer uses something like a mailbox to hold your
list. The list as a whole is the mail holder. As you add items, the computer
places it in the next mailbox within the mail holder.

226 Part III: Performing Common Tasks

 Just as the mailboxes are numbered in a mail holder, the memory slots used
for a list are numbered. The numbers begin with 0, not with 1 as you might
expect. Each mailbox receives the next number in line. A mail holder with
the months of the year would contain 12 mailboxes. The mailboxes would be
numbered from 0 to 11 (not 12, as you might think). It’s essential to get the
numbering scheme down as quickly as possible because even experienced
developers get into trouble by using 1 and not 0 as a starting point at times.

Depending on what sort of information you place in each mailbox, the mail-
boxes need not be of the same size. Python lets you store a string in one
mailbox, an integer in another, and a floating-point value in another. The com-
puter doesn’t know what kind of information is stored in each mailbox and it
doesn’t care. All the computer sees is one long list of numbers that could be
anything. Python performs all the work required to treat the data elements
according to the right type and to ensure that when you request item five,
you actually get item five.

 In general, it’s good practice to create lists of like items to make the data
easier to manage. When creating a list of all integers, for example, rather than
of mixed data, you can make assumptions about the information and don’t
have to spend nearly as much time checking it. However, in some situations,
you might need to mix data. Many other programming languages require that
lists have just one type of data, but Python offers the flexibility of using mixed
data sorts. Just remember that using mixed data in a list means that you must
determine the data type when retrieving the information in order to work with
the data correctly. Treating a string as an integer would cause problems in
your application.

Creating Lists
As in real life, before you can do anything with a list, you must create it. As
previously stated, Python lists can mix types. However, it’s always a best
practice to restrict a list to a single type when you can. The following steps
demonstrate how to create Python lists.

 1. Open a Python Shell window.

 You see the familiar Python prompt.

 2. Type List1 = [“One”, 1, “Two”, True] and press Enter.

 Python creates a list named List1 for you. This list contains two string
values (One and Two), an integer value (1), and a Boolean value (True).
Of course, you can’t actually see anything because Python processes the
command without saying anything.

227 Chapter 12: Managing Lists

 Notice that each data type that you type is a different color. When you
use the default color scheme, Python displays strings in green, numbers
in black, and Boolean values in orange. The color of an entry is a cue
that tells you whether you have typed the entry correctly, which helps
reduce errors when creating a list.

 3. Type print(List1) and press Enter.

 You see the content of the list as a whole, as shown in Figure 12-3. Notice
that the string entries appear in single quotes, even though you typed
them using double quotes. Strings can appear in either single quotes or
double quotes in Python.

Figure 12-3:
Python

displays the
content of
List1.

 4. Type dir(List1) and press Enter.

 Python displays a list of actions that you can perform using lists, as
shown in Figure 12-4. Notice that the output is actually a list. So, you’re
using a list to determine what you can do with another list.

Figure 12-4:
Python

provides a
listing of the
actions you

can perform
using a list.

228 Part III: Performing Common Tasks

 As you start working with objects of greater complexity, you need to
remember that the dir() command always shows what tasks you can
perform using that object. The actions that appear without underscores
are the main actions that you can perform using a list. These actions are
the following:

	 •	append

	 •	clear

	 •	copy

	 •	count

	 •	extend

	 •	index

	 •	insert

	 •	pop

	 •	remove

	 •	reverse

	 •	sort

 5. Close the Python Shell window.

Accessing Lists
After you create a list, you want to access the information it contains. An
object isn’t particularly useful if you can’t at least access the information it
contains. The previous section shows how to use the print() and dir()
functions to interact with a list, but there are other ways to perform the task,
as described in the following steps.

 1. Open a Python Shell window.

 You see the familiar Python prompt.

 2. Type List1 = [“One”, 1, “Two”, True] and press Enter.

 Python creates a list named List1 for you.

229 Chapter 12: Managing Lists

 3. Type List1[1] and press Enter.

 You see the value 1 as output, as shown in Figure 12-5. The use of a
number within a set of square brackets is called an index. Python always
uses zero-based indexes, so asking for the element at index 1 means get-
ting the second element in the list.

Figure 12-5:
Make sure

to use
the cor­

rect index
number.

 4. Type List1[1:3] and press Enter.

 You see a range of values that includes two elements, as shown in
Figure 12-6. When typing a range, the end of the range is always one
greater than the number of elements returned. In this case, that means
that you get elements 1 and 2, not elements 1 through 3 as you might
expect.

Figure 12-6:
Ranges

return mul­
tiple values.

 5. Type List1[1:] and press Enter.

 You see all the elements, starting from element 1 to the end of the list,
as shown in Figure 12-7. A range can have a blank ending number, which
simply means to print the rest of the list.

230 Part III: Performing Common Tasks

Figure 12-7:
Leaving

the ending
number of a
range blank

prints the
rest of the

list.

 6. Type List1[:3] and press Enter.

 Python displays the elements from 0 through 2. Leaving the start of a
range blank means that you want to start with element 0, as shown in
Figure 12-8.

Figure 12-8:
Leaving the

beginning
number of a
range blank
prints from
element 0.

 7. Close the Python Shell window.

 Even though it’s really confusing to do so, you can use negative indexes with
Python. Instead of working from the left, Python will work from the right and
backward. For example, if you have List1 = ["One", 1, "Two", True]
and type List1[-2], you get Two as output. Likewise, typing List[-3]
results in an output of 1. The rightmost element is element -1 in this case.

231 Chapter 12: Managing Lists

Looping through Lists
To automate the processing of list elements, you need some way to loop
through the list. The easiest way to perform this task is to rely on a for state-
ment, as described in the following steps. This example also appears with the
downloadable source code as ListLoop.py.

 1. Open a Python File window.

 You see an editor in which you can type the example code.

 2. Type the following code into the window — pressing Enter after
each line:

List1 = [0, 1, 2, 3, 4, 5]

for Item in List1:
 print(Item)

 The example begins by creating a list consisting of numeric values.
It then uses a for loop to obtain each element in turn and print it
onscreen.

 3. Choose Run➪Run Module.

 You see a Python Shell window open. The output shows the individual
values in the list, one on each line, as shown in Figure 12-9.

Figure 12-9:
A loop

makes it
easy to

obtain a
copy of

each item
and process
it as needed.

232 Part III: Performing Common Tasks

Modifying Lists
You can modify the content of a list as needed. Modifying a list means to
change a particular entry, add a new entry, or remove an existing entry. To
perform these tasks, you must sometimes read an entry. The concept of mod-
ification is found within the acronym CRUD, which stands for Create, Read,
Update, and Delete. Here are the list functions associated with CRUD:

 ✓ append(): Adds a new entry to the end of the list.

 ✓ clear(): Removes all entries from the list.

 ✓ copy(): Creates a copy of the current list and places it in a new list.

 ✓ extend(): Adds items from an existing list and into the current list.

 ✓ insert(): Adds a new entry to the position specified in the list.

 ✓ pop(): Removes an entry from the end of the list.

 ✓ remove(): Removes an entry from the specified position in the list.

The following steps show how to perform modification tasks with lists. This
is a hands-on exercise. As the book progresses, you see these same functions
used within application code. The purpose of this exercise is to help you gain
a feel for how lists work.

 1. Open a Python Shell window.

 You see the familiar Python prompt.

 2. Type List1 = [] and press Enter.

 Python creates a list named List1 for you.

 Notice that the square brackets are empty. List1 doesn’t contain any
entries. You can create empty lists that you fill with information later. In
fact, this is precisely how many lists start because you usually don’t know
what information they will contain until the user interacts with the list.

 3. Type len(List1) and press Enter.

 The len() function outputs 0, as shown in Figure 12-10. When creating
an application, you can check for an empty list using the len() func-
tion. If a list is empty, you can’t perform tasks such as removing ele-
ments from it because there is nothing to remove.

 4. Type List1.append(1) and press Enter.

233 Chapter 12: Managing Lists

Figure 12-10:
Check for

empty lists
as needed

in your
application.

 5. Type len(List1) and press Enter.

 The len() function now reports a length of 1.

 6. Type List1[0] and press Enter.

 You see the value stored in element 0 of List1, as shown in Figure 12-11.

Figure 12-11:
Appending
an element

changes the
list length

and stores
the value at

the end of
the list.

 7. Type List1.insert(0, 2) and press Enter.

 The insert() function requires two arguments. The first argument is
the index of the insertion, which is element 0 in this case. The second
argument is the object you want inserted at that point, which is 2 in this
case.

 8. Type List1 and press Enter.

 Python has added another element to List1. However, using the insert()
function lets you add the new element before the first element, as shown
in Figure 12-12.

234 Part III: Performing Common Tasks

Figure 12-12:
Inserting
provides
flexibility
in decid­

ing where
to add an
element.

 9. Type List2 = List1.copy() and press Enter.

 The new list, List2, is a precise copy of List1. Copying is often used
to create a temporary version of an existing list so that a user can make
temporary modifications to it rather than to the original list. When the
user is done, the application can either delete the temporary list or copy
it to the original list.

 10. Type List1.extend(List2) and press Enter.

 Python copies all the elements in List2 to the end of List1. Extending
is commonly used to consolidate two lists.

 11. Type List1 and press Enter.

 You see that the copy and extend processes have worked. List1 now
contains the values 2, 1, 2, and 1, as shown in Figure 12-13.

 12. Type List1.pop() and press Enter.

 Python displays a value of 1, as shown in Figure 12-14. The 1 was stored
at the end of the list, and pop() always removes values from the end.

 13. Type List1.remove(1) and press Enter.

 This time, Python removes the item at element 1. Unlike the pop()
function, the remove() function doesn’t display the value of the item it
removed.

 14. Type List1.clear() and press Enter.

 Using clear() means that the list shouldn’t contain any elements now.

235 Chapter 12: Managing Lists

Figure 12-13:
Copying and

extending
provide

methods for
moving a

lot of data
around
quickly.

Figure 12-14:
Use pop()

to remove
elements

from the end
of a list.

236 Part III: Performing Common Tasks

 15. Type len(List1) and press Enter.

 You see that the output is 0. List1 is definitely empty. At this point,
you’ve tried all the modification methods that Python provides for lists.
Work with List1 some more using these various functions until you feel
comfortable making changes to the list.

 16. Close the Python Shell window.

Searching Lists
Modifying a list isn’t very easy when you don’t know what the list contains.
The ability to search a list is essential if you want to make maintenance tasks
easier. The following steps help you create an application that demonstrates
the ability to search a list for specific values. This example also appears with
the downloadable source code as SearchList.py.

 1. Open a Python File window.

 You see an editor in which you can type the example code.

 2. Type the following code into the window — pressing Enter after
each line:

Using operators with lists
Lists can also rely on operators to perform cer­
tain tasks. For example, if you want to create a
list that contains four copies of the word Hello,
you could use MyList = ["Hello"] * 4
to fill it. A list allows repetition as needed. The
multiplication operator (*) tells Python how
many times to repeat a given item. It’s essen­
tial to remember that every repeated ele­
ment is separate, so what MyList contains
is ['Hello', 'Hello', 'Hello',
'Hello'].

You can also use concatenation to fill a list. For
example, using MyList = ["Hello"] +
["World"] + ["!"] * 4 creates six

elements in MyList. The first element is Hello,
followed by World and ending with four ele­
ments with one exclamation mark (!) in each
element.

The membership operator (in) also works with
lists. This chapter uses a straightforward and
easy­to­understand method of searching lists
(the recommended approach). However, you
can use the membership operator to make
things shorter and simpler by using "Hello"
in MyList. Assuming that you have your list
filled with ['Hello', 'World', '!',
'!', '!', '!'], the output of this state­
ment is True.

237 Chapter 12: Managing Lists

Colors = ["Red", "Orange", "Yellow", "Green", "Blue"]

ColorSelect = ""

while str.upper(ColorSelect) != "QUIT":
 ColorSelect = input("Please type a color name: ")
 if (Colors.count(ColorSelect) >= 1):
 print("The color exists in the list!")
 elif (str.upper(ColorSelect) != "QUIT"):
 print("The list doesn't contain the color.")

 The example begins by creating a list named Colors that contains
color names. It also creates a variable named ColorSelect to hold
the name of the color that the user wants to find. The application then
enters a loop where the user is asked for a color name that is placed in
ColorSelect. As long as this variable doesn’t contain the word QUIT,
the application continues a loop that requests input.

 Whenever the user inputs a color name, the application asks the list to
count the number of occurrences of that color. When the value is equal
to or greater than one, the list does contain the color and an appropri-
ate message appears onscreen. On the other hand, when the list doesn’t
contain the requested color, an alternative message appears onscreen.

 Notice how this example uses an elif clause to check whether
ColorSelect contains the word QUIT. This technique of including
an elif clause ensures that the application doesn’t output a message
when the user wants to quit the application. You need to use similar
techniques when you create your applications to avoid potential user
confusion or even data loss (when the application performs a task the
user didn’t actually request).

 3. Choose Run➪Run Module.

 You see a Python Shell window open. The application asks you to type a
color name.

 4. Type Blue and press Enter.

 You see a message telling you that the color does exist in the list, as
shown in Figure 12-15.

 5. Type Purple and press Enter.

 You see a message telling you that the color doesn’t exist, as shown in
Figure 12-16.

 6. Type Quit and press Enter.

 The application ends. Notice that the application displays neither a suc-
cess nor a failure message.

238 Part III: Performing Common Tasks

Figure 12-15:
Colors that
exist in the
list receive

the success
message.

Figure 12-16:
Entering a
color that

doesn’t exist
results in
a failure

message.

Sorting Lists
The computer can locate information in a list no matter what order it appears
in. It’s a fact, though, that longer lists are easier to search when you put them
in sorted order. However, the main reason to put a list in sorted order is to
make it easier for the human user to actually see the information the list con-
tains. People work better with sorted information.

This example begins with an unsorted list. It then sorts the list and out-
puts it to the display. The following steps demonstrate how to perform this
task. This example also appears with the downloadable source code as
SortList.py.

239 Chapter 12: Managing Lists

 1. Open a Python File window.

 You see an editor in which you can type the example code.

 2. Type the following code into the window — pressing Enter after
each line:

Colors = ["Red", "Orange", "Yellow", "Green", "Blue"]

for Item in Colors:
 print(Item, end=" ")

print()

Colors.sort()

for Item in Colors:
 print(Item, end=" ")

print()

 The example begins by creating an array of colors. The colors are cur-
rently in unsorted order. The example then prints the colors in the order
in which they appear. Notice the use of the end=" " argument for the
print() function to ensure that all color entries remain on one line
(making them easier to compare).

 Sorting the list is as easy as calling the sort() function. After the exam-
ple calls the sort() function, it prints the list again so that you can see
the result.

 3. Choose Run➪Run Module.

 You see a Python Shell window open. The application outputs both the
unsorted and sorted lists, as shown in Figure 12-17.

Figure 12-17:
Sorting a list
is as easy as

calling the
sort()
function.

240 Part III: Performing Common Tasks

 You may need to sort items in reverse order at times. To accomplish this task,
you use the reverse() function. The function must appear on a separate
line. So the previous example would look like this if you wanted to sort the
colors in reverse order:

Colors = ["Red", "Orange", "Yellow", "Green", "Blue"]

for Item in Colors:
 print(Item, end=" ")

print()

Colors.sort()
Colors.reverse()

for Item in Colors:
 print(Item, end=" ")

print()

Working with the Counter Object
Sometimes you have a data source and you simply need to know how often
things happen (such as the appearance of a certain item in the list). When
you have a short list, you can simply count the items. However, when you
have a really long list, it’s nearly impossible to get an accurate count. For
example, consider what it would take if you had a really long novel like War
and Peace in a list and wanted to know the frequency of the words the novel
used. The task would be impossible without a computer.

 The Counter object lets you count items quickly. In addition, it’s incredibly
easy to use. This book shows the Counter object in use a number of times,
but this chapter shows how to use it specifically with lists. The example in
this section creates a list with repetitive elements and then counts how many
times those elements actually appear. This example also appears with the
downloadable source code as UseCounterWithList.py.

 1. Open a Python File window.

 You see an editor in which you can type the example code.

 2. Type the following code into the window — pressing Enter after each
line:

241 Chapter 12: Managing Lists

from collections import Counter

MyList = [1, 2, 3, 4, 1, 2, 3, 1, 2, 1, 5]
ListCount = Counter(MyList)

print(ListCount)

for ThisItem in ListCount.items():
 print("Item: ", ThisItem[0],
 " Appears: ", ThisItem[1])

print("The value 1 appears {0} times."
 .format(ListCount.get(1)))

 In order to use the Counter object, you must import it from collections.
Of course, if you work with other collection types in your application, you
can import the entire collections module by typing import collections
instead.

 The example begins by creating a list, MyList, with repetitive numeric
elements. You can easily see that some elements appear more than once.
The example places the list into a new Counter object, ListCount. You
can create Counter objects in all sorts of ways, but this is the most con-
venient method when working with a list.

 The Counter object and the list aren’t actually connected in any
way. When the list content changes, you must re-create the Counter
object because it won’t automatically see the change. An alternative
to re-creating the counter is to call the clear() method first and then
call the update() method to fill the Counter object with the new data.

 The application prints ListCount in various ways. The first output
is the Counter as it appears without any manipulation. The second
output prints the individual unique elements in MyList along with the
number of times each element appears. To obtain both the element and
the number of times it appears, you must use the items() function as
shown. Finally, the example demonstrates how to obtain an individual
count from the list using the get() function.

 3. Choose Run➪Run Module.

 A Python Shell window opens, and you see the results of using the
Counter object, as shown in Figure 12-18.

242 Part III: Performing Common Tasks

Figure 12-18:
The

Counter
is helpful in

obtaining
statistics

about longer
lists.

 Notice that the information is actually stored in the Counter as a key
and value pair. Chapter 13 discusses this topic in greater detail. All
you really need to know for now is that the element found in MyList
becomes a key in ListCount that identifies the unique element name.
The value contains the number of times that that element appears
within MyList.

Chapter 13

Collecting All Sorts of Data
In This Chapter
▶ Defining a collection

▶ Using tuples

▶ Using dictionaries

▶ Developing stacks using lists

▶ Using the queue module

▶ Using the deque module

P
eople collect all sorts of things. The CDs stacked near your entertain-
ment center, the plates that are part of a series, baseball cards, and even

the pens from every restaurant you’ve ever visited are all collections. The
collections you encounter when you write applications are the same as the
collections in the real world. A collection is simply a grouping of like items in
one place and usually organized into some easily understood form.

 This chapter is about collections of various sorts. The central idea behind
every collection is to create an environment in which the collection is properly
managed and lets you easily locate precisely what you want at any given time.
A set of bookshelves works great for storing books, DVDs, and other sorts of
flat items. However, you probably put your pen collection in a holder or even
a display case. The difference in storage locations doesn’t change the fact that
both house collections. The same is true with computer collections. Yes, there
are differences between a stack and a queue, but the main idea is to provide
the means to manage data properly and make it easy to access when needed.

Understanding Collections
In Chapter 12, you’re introduced to sequences. A sequence is a succession
of values that are bound together in a container. The simplest sequence is
a string, which is a succession of characters. Next comes the list described
in Chapter 12, which is a succession of objects. Even though a string and a
list are both sequences, they have significant differences. For example, when
working with a string, you set all the characters to lowercase — something

244 Part III: Performing Common Tasks

you can’t do with a list. On the other hand, lists let you append new items,
which is something a string doesn’t support. Collections are simply another
kind of sequence, albeit a more complex sequence than you find in either a
string or list.

 No matter which sequence you use, they all support two functions: index()
and count(). The index() function always returns the position of a speci-
fied item in the sequence. For example, you can return the position of a char-
acter in a string or the position of an object in a list. The count() function
returns the number of times a specific item appears in the list. Again, the kind
of specific item depends upon the kind of sequence.

You can use collections to create database-like structures using Python. Each
collection type has a different purpose, and you use the various types in
specific ways. The important idea to remember is that collections are simply
another kind of sequence. As with every other kind of sequence, collections
always support the index() and count() functions as part of their base
functionality.

Python is designed to be extensible. However, it does rely on a base set of
collections that you can use to create most application types. This chapter
describes the most common collections:

 ✓ Tuple: A tuple is a collection used to create complex list-like sequences.
An advantage of tuples is that you can nest the content of a tuple. This
feature lets you create structures that can hold employee records or x-y
coordinate pairs.

 ✓ Dictionary: As with the real dictionaries, you create key/value pairs
when using the dictionary collection (think of a word and its associated
definition). A dictionary provides incredibly fast search times and makes
ordering data significantly easier.

 ✓ Stack: Most programming languages support stacks directly. However,
Python doesn’t support the stack, although there’s a work-around for
that. A stack is a first in/first out (FIFO) sequence. Think of a pile of
pancakes: You can add new pancakes to the top and also take them off
of the top. A stack is an important collection that you can simulate in
Python using a list, which is precisely what this chapter does.

 ✓ queue: A queue is a last in/first out (LIFO) collection. You use it to track
items that need to be processed in some way. Think of a queue as a
line at the bank. You go into the line, wait your turn, and are eventually
called to talk with a teller.

 ✓ deque: A double-ended queue (deque) is a queue-like structure that
lets you add or remove items from either end, but not from the middle.
You can use a deque as a queue or a stack or any other kind of collec-
tion to which you’re adding and from which you’re removing items in
an orderly manner (in contrast to lists, tuples, and dictionaries, which
allow randomized access and management).

245 Chapter 13: Collecting All Sorts of Data

Working with Tuples
As previously mentioned, a tuple is a collection used to create complex lists, in
which you can embed one tuple within another. This embedding lets you create
hierarchies with tuples. A hierarchy could be something as simple as the direc-
tory listing of your hard drive or an organizational chart for your company. The
idea is that you can create complex data structures using a tuple.

 Tuples are immutable, which means you can’t change them. You can create
a new tuple with the same name and modify it in some way, but you can’t
modify an existing tuple. Lists are mutable, which means that you can change
them. So, a tuple can seem at first to be at a disadvantage, but immutability
has all sorts of advantages, such as being more secure as well as faster. In
addition, immutable objects are easier to use with multiple processors.

The two biggest differences between a tuple and a list are that a tuple is immu-
table and allows you to embed one tuple inside another. The following steps
demonstrate how you can interact with a tuple in Python.

 1. Open a Python Shell window.

 You see the familiar Python prompt.

 2. Type MyTuple = (“Red”, “Blue”, “Green”) and press Enter.

 Python creates a tuple containing three strings.

 3. Type MyTuple and press Enter.

 You see the content of MyTuple, which is three strings, as shown in
Figure 13-1. Notice that the entries use single quotes, even though you
used double quotes to create the tuple. In addition, notice that a tuple
uses parentheses rather than square brackets, as lists do.

Figure 13-1:
Tuples use
parenthe­

ses, not
square

brackets.

246 Part III: Performing Common Tasks

 4. Type dir(MyTuple) and press Enter.

 Python presents a list of functions that you can use with tuples, as
shown in Figure 13-2. Notice that the list of functions appears signifi-
cantly smaller than the list of functions provided with lists in Chapter 12.
The count() and index() functions are present.

Figure 13-2:
Fewer

functions
seem to be

available
for use with

tuples.

 However, appearances can be deceiving. For example, you can add
new items using the __add__() function. When working with Python
objects, look at all the entries before you make a decision as to
functionality.

 5. Type MyTuple = MyTuple.__add__((“Purple”,)) and press Enter.

 This code adds a new tuple to MyTuple and places the result in a new
copy of MyTuple. The old copy of MyTuple is destroyed after the call.

 The __add__() function accepts only tuples as input. This means that
you must enclose the addition in parentheses. In addition, when creat-
ing a tuple with a single entry, you must add a comma after the entry, as
shown in the example. This is an odd Python rule that you need to keep
in mind or you’ll see an error message similar to this one:

TypeError: can only concatenate tuple (not "str") to
 tuple

 6. Type MyTuple and press Enter.

 The addition to MyTuple appears at the end of the list, as shown in
Figure 13-3. Notice that it appears at the same level as the other entries.

247 Chapter 13: Collecting All Sorts of Data

Figure 13-3:
This new

copy of
MyTuple

contains an
additional

entry.

 7. Type MyTuple = MyTuple.__add__((“Yellow”, (“Orange”, “Black”))) and
press Enter.

 This step adds three entries: Yellow, Orange, and Black. However,
Orange and Black are added as a tuple within the main tuple, which
creates a hierarchy. These two entries are actually treated as a single
entry within the main tuple.

 You can replace the __add__() function with the concatenation opera-
tor. For example, if you want to add Magenta to the front of the tuple list,
you type MyTuple = ("Magenta",) + MyTuple.

 8. Type MyTuple[4] and press Enter.

 Python displays a single member of MyTuple, Orange. Tuples use
indexes to access individual members, just as lists do. You can also
specify a range when needed. Anything you can do with a list index you
can also do with a tuple index.

 9. Type MyTuple[5] and press Enter.

 You see a tuple that contains Orange and Black. Of course, you might
not want to use both members in tuple form.

 Tuples do contain hierarchies on a regular basis. You can detect when
an index has returned another tuple, rather than a value, by testing for
type. For example, in this case, you could detect that the sixth item
(index 5) contains a tuple by typing type(MyTuple[5]) == tuple.
The output would be True in this case.

248 Part III: Performing Common Tasks

 10. Type MyTuple[5][0] and press Enter.

 At this point, you see Orange as output. Figure 13-4 shows the results
of the previous three commands so that you can see the progression
of index usage. The indexes always appear in order of their level in the
hierarchy.

Figure 13-4:
Use indexes

to gain
access to

the indi­
vidual tuple

members.

 Using a combination of indexes and the __add__() function (or the
concatenation operator, +), you can create flexible applications that
rely on tuples. For example, you can remove an element from a tuple by
making it equal to a range of values. If you wanted to remove the tuple
containing Orange and Black, you type MyTuple = MyTuple[0:5].

Working with Dictionaries
A Python dictionary works just the same as its real-world counterpart — you
create a key and value pair. It’s just like the word and definition in a diction-
ary. As with lists, dictionaries are mutable, which means that you can change

249 Chapter 13: Collecting All Sorts of Data

them as needed. The main reason to use a dictionary is to make informa-
tion lookup faster. The key is always short and unique so that the computer
doesn’t spend a lot of time looking for the information you need.

The following sections demonstrate how to create and use a dictionary. When
you know how to work with dictionaries, you use that knowledge to make up
for deficiencies in the Python language. Most languages include the concept
of a switch statement, which is essentially a menu of choices from which one
choice is selected. Python doesn’t include this option, so you must normally
rely on if...elif statements to perform the task. (Such statements work,
but they aren’t as clear as they could be.)

Creating and using a dictionary
Creating and using a dictionary is much like working with a list, except
that you must now define a key and value pair. Here are the special rules for
creating a key:

 ✓ The key must be unique. When you enter a duplicate key, the informa-
tion found in the second entry wins — the first entry is simply replaced
with the second.

 ✓ The key must be immutable. This rule means that you can use strings,
numbers, or tuples for the key. You can’t, however, use a list for a key.

You have no restrictions on the values you provide. A value can be any
Python object, so you can use a dictionary to access an employee record
or other complex data. The following steps help you understand how to use
dictionaries better.

 1. Open a Python Shell window.

 You see the familiar Python prompt.

 2. Type Colors = {“Sam”: “Blue”, “Amy”: “Red”, “Sarah”: “Yellow”} and
press Enter.

 Python creates a dictionary containing three entries with people’s
favorite colors. Notice how you create the key and value pair. The
key comes first, followed by a colon and then the value. Each entry is
separated by a comma.

 3. Type Colors and press Enter.

 You see the key and value pairs, as shown in Figure 13-5. However, notice
that the entries are sorted in key order. A dictionary automatically keeps
the keys sorted to make access faster, which means that you get fast

250 Part III: Performing Common Tasks

search times even when working with a large data set. The downside is
that creating the dictionary takes longer than using something like a
list because the computer is busy sorting the entries.

Figure 13-5:
A diction­

ary places
entries in

sorted order.

 4. Type Colors[“Sarah”] and press Enter.

 You see the color associated with Sarah, Yellow, as shown in Figure 13-6.
Using a string as a key, rather than using a numeric index, makes the
code easier to read and makes it self-documenting to an extent. By
making your code more readable, dictionaries save you considerable
time in the long run (which is why they’re so popular). However, the
convenience of a dictionary comes at the cost of additional creation
time and a higher use of resources, so you have trade-offs to consider.

Figure 13-6:
Dictionaries
make value

access easy
and self­

documenting.

 5. Type Colors.keys() and press Enter.

 The dictionary presents a list of the keys it contains, as shown in
Figure 13-7. You can use these keys to automate access to the dictionary.

251 Chapter 13: Collecting All Sorts of Data

Figure 13-7:
You can ask
a dictionary

for a list of
keys.

 6. Type the following code (pressing Enter after each line and pressing
Enter twice after the last line):

for Item in Colors.keys():
 print("{0} likes the color {1}."
 .format(Item, Colors[Item]))

 The example code outputs a listing of each of the user names and the
user’s favorite color, as shown in Figure 13-8. Using dictionaries can
make creating useful output a lot easier. The use of a meaningful key
means that the key can easily be part of the output.

Figure 13-8:
You can

create
useful keys

to output
information

with greater
ease.

252 Part III: Performing Common Tasks

 7. Type Colors[“Sarah”] = “Purple” and press Enter.

 The dictionary content is updated so that Sarah now likes Purple
instead of Yellow.

 8. Type Colors.update({“Harry”: “Orange”}) and press Enter.

 A new entry is added to the dictionary.

 9. Place your cursor at the end of the third line of the code you typed in
Step 6 and press Enter.

 The editor creates a copy of the code for you. This is a time-saving tech-
nique that you can use in the Python Shell when you experiment while
using code that takes a while to type. Even though you have to type it
the first time, you have no good reason to type it the second time.

 10. Press Enter twice.

 You see the updated output in Figure 13-9. Notice that Harry is added in
sorted order. In addition, Sarah’s entry is changed to the color Purple.

Figure 13-9:
Dictionaries
are easy to

modify.

253 Chapter 13: Collecting All Sorts of Data

 11. Type del Colors[“Sam”] and press Enter.

 Python removes Sam’s entry from the dictionary.

 12. Repeat Steps 9 and 10.

 You verify that Sam’s entry is actually gone.

 13. Type len(Colors) and press Enter.

 The output value of 3 verifies that the dictionary contains only three
entries now, rather than 4.

 14. Type Colors.clear() and press Enter.

 15. Type len(Colors) and press Enter.

 Python reports that Colors has 0 entries, so the dictionary is now empty.

 16. Close the Python Shell window.

Replacing the switch statement
with a dictionary
Most programming languages provide some sort of switch statement. A
switch statement provides for elegant menu type selections. The user has a
number of options but is allowed to choose only one of them. The program
takes some course of action based on the user selection. Here is some rep-
resentative code (it won’t execute) of a switch statement you might find in
another language:

switch(n)
{
 case 0:
 print("You selected blue.");
 break;
 case 1:
 print("You selected yellow.");
 break;
 case 2:
 print("You selected green.");
 break;
}

The application normally presents a menu-type interface, obtains the number
of the selection from the user, and then chooses the correct course of action
from the switch statement. It’s straightforward and much neater than using
a series of if statements to accomplish the same task.

254 Part III: Performing Common Tasks

Unfortunately, Python doesn’t come with a switch statement. The best you
can hope to do is use an if...elif statement for the task. However, by
using a dictionary, you can simulate the use of a switch statement. The
following steps help you create an example that will demonstrate the required
technique. This example also appears with the downloadable source code as
PythonSwitch.py.

 1. Open a Python File window.

 You see an editor in which you can type the example code.

 2. Type the following code into the window — pressing Enter after
each line:

def PrintBlue():
 print("You chose blue!\r\n")

def PrintRed():
 print("You chose red!\r\n")

def PrintOrange():
 print("You chose orange!\r\n")

def PrintYellow():
 print("You chose yellow!\r\n")

 Before the code can do anything for you, you must define the tasks. Each
of these functions defines a task associated with selecting a color option
onscreen. Only one of them gets called at any given time.

 3. Type the following code into the window — pressing Enter after
each line:

ColorSelect = {
 0: PrintBlue,
 1: PrintRed,
 2: PrintOrange,
 3: PrintYellow
}

 This code is the dictionary. Each key is like the case part of the
switch statement. The values specify what to do. In other words, this
is the switch structure. The functions that you created earlier are the
action part of the switch — the part that goes between the case state-
ment and the break clause.

255 Chapter 13: Collecting All Sorts of Data

 4. Type the following code into the window — pressing Enter after
each line:

Selection = 0

while (Selection != 4):
 print("0. Blue")
 print("1. Red")
 print("2. Orange")
 print("3. Yellow")
 print("4. Quit")

 Selection = int(input("Select a color option: "))

 if (Selection >= 0) and (Selection < 4):
 ColorSelect[Selection]()

 Finally, you see the user interface part of the example. The code begins
by creating an input variable, Selection. It then goes into a loop until
the user enters a value of 4.

 During each loop, the application displays a list of options and then
waits for user input. When the user does provide input, the application
performs a range check on it. Any value between 0 and 3 selects one of
the functions defined earlier using the dictionary as the switching
mechanism.

 5. Choose Run➪Run Module.

 You see a Python Shell window open. The application displays a menu
like the one shown in Figure 13-10.

Figure 13-10:
The

application
begins by
displaying
the menu.

256 Part III: Performing Common Tasks

 6. Type 0 and press Enter.

 The application tells you that you selected blue and then displays the
menu again, as shown in Figure 13-11.

Figure 13-11:
After dis­

playing your
selection,

the applica­
tion displays

the menu
again.

 7. Type 4 and press Enter.

 The application ends.

Creating Stacks Using Lists
A stack is a handy programming structure because you can use it to save an
application execution environment (the state of variables and other attri-
butes of the application environment at any given time) or as a means of
determining an order of execution. Unfortunately, Python doesn’t provide
a stack as a collection. However, it does provide lists, and you can use a
list as a perfectly acceptable stack. The following steps help you create
an example of using a list as a stack. This example also appears with the
downloadable source code as ListStack.py.

257 Chapter 13: Collecting All Sorts of Data

 1. Open a Python File window.

 You see an editor in which you can type the example code.

 2. Type the following code into the window — pressing Enter after
each line:

MyStack = []
StackSize = 3

def DisplayStack():
 print("Stack currently contains:")
 for Item in MyStack:
 print(Item)

def Push(Value):
 if len(MyStack) < StackSize:
 MyStack.append(Value)
 else:
 print("Stack is full!")

def Pop():
 if len(MyStack) > 0:
 MyStack.pop()
 else:
 print("Stack is empty.")

Push(1)
Push(2)
Push(3)
DisplayStack()
input("Press any key when ready...")

Push(4)
DisplayStack()
input("Press any key when ready...")

Pop()
DisplayStack()
input("Press any key when ready...")

Pop()
Pop()
Pop()
DisplayStack()

258 Part III: Performing Common Tasks

 In this example, the application creates a list and a variable to deter-
mine the maximum stack size. Stacks normally have a specific size
range. This is admittedly a really small stack, but it serves well for the
example’s needs.

 Stacks work by pushing a value onto the top of the stack and popping
values back off the top of the stack. The Push() and Pop() functions
perform these two tasks. The code adds DisplayStack() to make it
easier to see the stack content as needed.

 The remaining code exercises the stack (demonstrates its functionality)
by pushing values onto it and then removing them. There are four main
exercise sections that test stack functionality.

 3. Choose Run➪Run Module.

 You see a Python Shell window open. The application fills the stack with
information and then displays it onscreen, as shown in Figure 13-12. In
this case, 3 is at the top of the stack because it’s the last value added.

Figure 13-12:
A stack
pushes

values one
on top of the

other.

 4. Press Enter.

 The application attempts to push another value onto the stack. However,
the stack is full, so the task fails, as shown in Figure 13-13.

 5. Press Enter.

 The application pops a value from the top of the stack. Remember that 3
is the top of the stack, so that’s the value that is missing in Figure 13-14.

259 Chapter 13: Collecting All Sorts of Data

Figure 13-13:
When the

stack is
full, it can’t
accept any

more values.

Figure 13-14:
Popping a

value means
removing it

from the top
of the stack.

 6. Press Enter.

 The application tries to pop more values from the stack than it contains,
resulting in an error, as shown in Figure 13-15. Any stack implementa-
tion that you create must be able to detect both overflows (too many
entries) and underflows (too few entries).

260 Part III: Performing Common Tasks

Figure 13-15:
Make sure

that your
stack imple­

mentation
detects

overflows
and

underflows.

Working with queues
A queue works differently from a stack. Think of any line you’ve ever stood
in: You go to the back of the line, and when you reach the front of the line you
get to do whatever you stood in the line to do. A queue is often used for task
scheduling and to maintain program flow — just as it is in the real world. The
following steps help you create a queue-based application. This example also
appears with the downloadable source code as QueueData.py.

 1. Open a Python File window.

 You see an editor in which you can type the example code.

 2. Type the following code into the window — pressing Enter after
each line:

import queue

MyQueue = queue.Queue(3)

print(MyQueue.empty())
input("Press any key when ready...")

261 Chapter 13: Collecting All Sorts of Data

MyQueue.put(1)
MyQueue.put(2)
print(MyQueue.full())
input("Press any key when ready...")

MyQueue.put(3)
print(MyQueue.full())
input("Press any key when ready...")

print(MyQueue.get())
print(MyQueue.empty())
print(MyQueue.full())
input("Press any key when ready...")

print(MyQueue.get())
print(MyQueue.get())

 To create a queue, you must import the queue module. This module
actually contains a number of queue types, but this example uses only
the standard FIFO queue.

 When a queue is empty, the empty() function returns True. Likewise,
when a queue is full, the full() function returns True. By testing the
state of empty() and full(), you can determine whether you need to
perform additional work with the queue or whether you can add other
information to it. These two functions help you manage a queue. It’s
not possible to iterate through a queue using a for loop as you have
done with other collection types, so you must monitor empty() and
full() instead.

 The two functions used to work with data in a queue are put(), which
adds new data, and get(), which removes data. A problem with queues
is that if you try to put more items into the queue than it can hold, it
simply waits until space is available to hold it. Unless you’re using a
multithreaded application (one that uses individual threads of execu-
tion to perform more than one task at one time), this state could end up
freezing your application.

 3. Choose Run➪Run Module.

 You see a Python Shell window open. The application tests the state of
the queue. In this case, you see an output of True, which means that
the queue is empty.

 4. Press Enter.

 The application adds two new values to the queue. In doing so, the
queue is no longer empty, as shown in Figure 13-16.

262 Part III: Performing Common Tasks

Figure 13-16:
When the

application
puts new
entries in

the queue,
the queue

no longer
reports that

it’s empty.

 5. Press Enter.

 The application adds another entry to the queue, which means that
the queue is now full because it was set to a size of 3. This means that
full() will return True because the queue is now full.

 6. Press Enter.

 To free space in the queue, the application gets one of the entries.
Whenever an application gets an entry, the get() function returns that
entry. Given that 1 was the first value added to the queue, the print()
function should return a value of 1, as shown in Figure 13-17. In addition,
both empty() and full() should now return False.

Figure 13-17:
Monitoring

is a key part
of work­
ing with
queues.

 7. Press Enter.

 The application gets the remaining two entries. You see 2 and 3 (in turn)
as output.

263 Chapter 13: Collecting All Sorts of Data

Working with deques
A deque is simply a queue where you can remove and add items from either
end. In many languages, a queue or stack starts out as a deque. Specialized
code serves to limit deque functionality to what is needed to perform a
particular task.

When working with a deque, you need to think of the deque as a sort of
horizontal line. Certain individual functions work with the left and right
ends of the deque so that you can add and remove items from either side.
The following steps help you create an example that demonstrates deque
usage. This example also appears with the downloadable source code as
DequeData.py.

 1. Open a Python File window.

 You see an editor in which you can type the example code.

 2. Type the following code into the window — pressing Enter after
each line.

import collections

MyDeque = collections.deque("abcdef", 10)

print("Starting state:")
for Item in MyDeque:
 print(Item, end=" ")

print("\r\n\r\nAppending and extending right")
MyDeque.append("h")
MyDeque.extend("ij")
for Item in MyDeque:
 print(Item, end=" ")
print("\r\nMyDeque contains {0} items."
 .format(len(MyDeque)))

print("\r\nPopping right")
print("Popping {0}".format(MyDeque.pop()))
for Item in MyDeque:
 print(Item, end=" ")

print("\r\n\r\nAppending and extending left")
MyDeque.appendleft("a")
MyDeque.extendleft("bc")
for Item in MyDeque:
 print(Item, end=" ")
print("\r\nMyDeque contains {0} items."
 .format(len(MyDeque)))

264 Part III: Performing Common Tasks

print("\r\nPopping left")
print("Popping {0}".format(MyDeque.popleft()))
for Item in MyDeque:
 print(Item, end=" ")

print("\r\n\r\nRemoving")
MyDeque.remove("a")
for Item in MyDeque:
 print(Item, end=" ")

 The implementation of deque is found in the collections module, so
you need to import it into your code. When you create a deque, you
can optionally specify a starting list of iterable items (items that can be
accessed and processed as part of a loop structure) and a maximum
size, as shown.

 A deque differentiates between adding one item and adding a group of
items. You use append() or appendleft() when adding a single item.
The extend() and extendleft() functions let you add multiple items.
You use the pop() or popleft() functions to remove one item at a
time. The act of popping values returns the value popped, so the exam-
ple prints the value onscreen. The remove() function is unique in that
it always works from the left side and always removes the first instance
of the requested data.

 Unlike some other collections, a deque is fully iterable. This means that
you can obtain a list of items using a for loop whenever necessary.

 3. Choose Run➪Run Module.

 You see a Python Shell window open. The example outputs the information
shown in Figure 13-18.

 It’s important to follow the output listing closely. Notice how the size
of the deque changes over time. After the application pops the j, the
deque still contains eight items. When the application appends and
extends from the left, it adds three more items. However, the resulting
deque contains only ten items. When you exceed the maximum size of a
deque, the extra data simply falls off the other end.

265 Chapter 13: Collecting All Sorts of Data

Figure 13-18:
A deque
provides

the double­
ended func­
tionality and

other fea­
tures you’d

expect.

266 Part III: Performing Common Tasks

Chapter 14

Creating and Using Classes
In This Chapter
▶ Defining the characteristics of a class

▶ Specifying the class components

▶ Creating your own class

▶ Working with the class in an application

▶ Working with subclasses

Y
ou’ve already worked with a number of classes in previous chapters.
Many of the examples are easy to construct and use because they

depend on the Python classes. Even though classes are briefly mentioned in
previous chapters, those chapters largely ignore them simply because dis-
cussing them wasn’t immediately important.

Classes make working with Python code more convenient by helping to
make your applications easy to read, understand, and use. You use classes to
create containers for your code and data, so they stay together in one piece.
Outsiders see your class as a black box — data goes in and results come out.

 At some point, you need to start constructing classes of your own if you want
to avoid the dangers of the spaghetti code that is found in older applications.
Spaghetti code is much as the name implies — various lines of procedures are
interwoven and spread out in such a way that it’s hard to figure out where one
piece of spaghetti begins and another ends. Trying to maintain spaghetti code
is nearly impossible, and some organizations have thrown out applications
because no one could figure them out.

Besides helping you understand classes as a packaging method that avoids
spaghetti code, this chapter helps you create and use your own classes for
the first time. You gain insights into how Python classes work toward making
your applications convenient to work with. This is an introductory sort of
chapter, though, and you won’t become so involved in classes that your head
begins to spin around on its own. This chapter is about making class develop-
ment simple and manageable.

268 Part III: Performing Common Tasks

Understanding the Class
as a Packaging Method

A class is essentially a method for packaging code. The idea is to simplify
code reuse, make applications more reliable, and reduce the potential for
security breaches. Well-designed classes are black boxes that accept certain
inputs and provide specific outputs based on those inputs. In short, a class
shouldn’t create any surprises for anyone and should have known (quantifi-
able) behaviors. How the class accomplishes its work is unimportant, and
hiding the details of its inner workings is essential to good coding practice.

Before you move onto actual class theory, you need to know a few terms that
are specific to classes. The following list defines terms that you need to know
in order to use the material that follows later in the chapter. These terms are
specific to Python. (Other languages may use different terms for the same
techniques or define terms that Python uses in different ways.)

 ✓ Class: Defines a blueprint for creating an object. Think of a builder who
wants to create a building of some type. The builder uses a blueprint to
ensure that the building will meet the required specifications. Likewise,
Python uses classes as a blueprint for creating new objects.

 ✓ Class variable: Provides a storage location used by all methods in an
instance of the class. A class variable is defined within the class proper
but outside of any of the class methods. Class variables aren’t used very
often because they’re a potential security risk — every method of the
class has access to the same information. In addition to being a security
risk, class variables are also visible as part of the class rather than a par-
ticular instance of a class, so they pose the potential problem of class
contamination.

 ✓ Data member: Defines either a class variable or an instance variable
used to hold data associated with a class and its objects.

 ✓ Function overloading: Creates more than one version of a function,
which results in different behaviors. The essential task of the function
may be the same, but the inputs are different and potentially the outputs
as well. Function overloading is used to provide flexibility so that a func-
tion can work with applications in various ways.

 ✓ Inheritance: Uses a parent class to create child classes that have the
same characteristics. The child classes usually have extended function-
ality or provide more specific behaviors than the parent class does.

 ✓ Instance: Defines an object created from the specification provided by a
class. Python can create as many instances of a class to perform the
work required by an application. Each instance is unique.

269 Chapter 14: Creating and Using Classes

 ✓ Instance variable: Provides a storage location used by a single method
of an instance of a class. The variable is defined within a method.
Instance variables are considered safer than class variables because
only one method of the class can access them. Data is passed between
methods using arguments, which allows for controlled checks of incom-
ing data and better control over data management.

 ✓ Instantiation: Performs the act of creating an instance of a class. The
resulting object is a unique class instance.

 ✓ Method: Defines the term used for functions that are part of a class.
Even though function and method essentially define the same element,
method is considered more specific because only classes can have
methods.

 ✓ Object: Defines a unique instance of a class. The object contains all the
methods and properties of the original class. However, the data for each
object differs. The storage locations are unique, even if the data is the
same.

 ✓ Operator overloading: Creates more than one version of a function
that is associated with an operator such as: +, -, /, or *, which results
in different behaviors. The essential task of the operator may be the
same, but the way in which the operator interacts with the data differs.
Operator overloading is used to provide flexibility so that an operator
can work with applications in various ways.

Considering the Parts of a Class
A class has a specific construction. Each part of a class performs a particular
task that gives the class useful characteristics. Of course, the class begins
with a container that is used to hold the entire class together, so that’s the
part that the first section that follows discusses. The remaining sections
describe the other parts of a class and help you understand how they con-
tribute to the class as a whole.

Creating the class definition
A class need not be particularly complex. In fact, you can create just the con-
tainer and one class element and call it a class. Of course, the resulting class
won’t do much, but you can instantiate it (tell Python to build an object using
your class as a blueprint) and work with it as you would any other class. The
following steps help you understand the basics behind a class by creating the
simplest class possible.

270 Part III: Performing Common Tasks

 1. Open a Python Shell window.

 You see the familiar Python prompt.

 2. Type the following code (pressing Enter after each line and pressing
Enter twice after the last line):

class MyClass:
 MyVar = 0

 The first line defines the class container, which consists of the keyword
class and the class name, which is MyClass. Every class you create
must begin precisely this way. You must always include class followed
by the class name.

 The second line is the class suite. All the elements that comprise the
class are called the class suite. In this case, you see a class variable
named MyVar, which is set to a value of 0. Every instance of the class
will have the same variable and start at the same value.

 3. Type MyInstance = MyClass() and press Enter.

 You have just created an instance of MyClass named MyInstance.
Of course, you’ll want to verify that you really have created such an
instance. Step 4 accomplishes that task.

 4. Type MyInstance.MyVar and press Enter.

 The output of 0, as shown in Figure 14-1, demonstrates that MyInstance
does indeed have a class variable named MyVar.

Figure 14-1:
The

instance
contains

the required
variable.

 5. Type MyInstance.__class__ and press Enter.

 Python displays the class used to create this instance, as shown in
Figure 14-2. The output tells you that this class is part of the __main__
module, which means that you typed it directly into the shell.

271 Chapter 14: Creating and Using Classes

 6. Retain this window and class for the next section.

Figure 14-2:
The class

name is also
correct, so

you know
that this

instance
is cre­

ated using
MyClass.

Considering the built-in
class attributes
When you create a class, you can easily think that all you get is the class.
However, Python adds built-in functionality to your class. For example, in the
preceding section, you type __class__ and press Enter. The __class__
attribute is built in; you didn’t create it. It helps to know that Python provides
this functionality so that you don’t have to add it. The functionality is needed
often enough that every class should have it, so Python supplies it. The fol-
lowing steps help you work with the built-in class attributes.

 1. Use the Python Shell window that you open in the preceding section.

 If you haven’t followed the steps in the preceding section, “Creating the
class definition,” please do so now.

 2. Type dir(MyInstance) and press Enter.

 A list of attributes appears, as shown in Figure 14-3. These attributes
provide specific functionality for your class. They’re also common to
every other class you create, so you can count on always having this
functionality in the classes you create.

 3. Type help(‘__class__’) and press Enter.

 Python displays information on the __class__ attribute, as shown in
Figure 14-4. You can use the same technique for learning more about any
attribute that Python adds to your class.

 4. Close the Python Shell window.

272 Part III: Performing Common Tasks

Figure 14-3:
Use the
dir()

function to
determine

which built­
in attributes
are present.

Figure 14-4:
Python

provides
help for

each of the
attributes it

adds to your
class.

273 Chapter 14: Creating and Using Classes

Working with methods
Methods are simply another kind of function that reside in classes. You create
and work with methods in precisely the same way that you do functions,
except that methods are always associated with a class (you don’t see free-
standing methods as you do functions). You can create two kinds of methods:
those associated with the class itself and those associated with an instance
of a class. It’s important to differentiate between the two. The following sec-
tions provide the details needed to work with both.

Creating class methods
A class method is one that you execute directly from the class without cre-
ating an instance of the class. Sometimes you need to create methods that
execute from the class, such as the functions you used with the str class
in order to modify strings. As an example, the MultipleException4.py
example in Chapter 9 uses the str.upper() function. The following steps
demonstrate how to create and use a class method.

 1. Open a Python Shell window.

 You see the familiar Python prompt.

 2. Type the following code (pressing Enter after each line and pressing
Enter twice after the last line):

class MyClass:
 def SayHello():
 print("Hello there!")

 The example class contains a single defined attribute, SayHello().
This method doesn’t accept any arguments and doesn’t return any
values. It simply prints a message as output. However, the method works
just fine for demonstration purposes.

 3. Type MyClass.SayHello() and press Enter.

 The example outputs the expected string, as shown in Figure 14-5.
Notice that you didn’t need to create an instance of the class — the
method is available immediately for use.

 4. Close the Python Shell window.

274 Part III: Performing Common Tasks

Figure 14-5:
The class

method
outputs

a simple
message.

 A class method can work only with class data. It doesn’t know about any data
associated with an instance of the class. You can pass it data as an argument,
and the method can return information as needed, but it can’t access the
instance data. As a consequence, you need to exercise care when creating
class methods to ensure that they’re essentially self-contained.

Creating instance methods
An instance method is one that is part of the individual instances. You use
instance methods to manipulate the data that the class manages. As a conse-
quence, you can’t use instance methods until you instantiate an object from
the class.

 All instance methods accept a single argument as a minimum, self. The
self argument points at the particular instance that the application is using
to manipulate data. Without the self argument, the method wouldn’t know
which instance data to use. However, self isn’t considered an accessible
argument — the value for self is supplied by Python, and you can’t change it
as part of calling the method.

The following steps demonstrate how to create and use instance methods in
Python.

 1. Open a Python Shell window.

 You see the familiar Python prompt.

 2. Type the following code (pressing Enter after each line and pressing
Enter twice after the last line):

class MyClass:
 def SayHello(self):
 print("Hello there!")

275 Chapter 14: Creating and Using Classes

 The example class contains a single defined attribute, SayHello().
This method doesn’t accept any special arguments and doesn’t return
any values. It simply prints a message as output. However, the method
works just fine for demonstration purposes.

 3. Type MyInstance = MyClass() and press Enter.

 Python creates an instance of MyClass named MyInstance.

 4. Type MyInstance.SayHello() and press Enter.

 You see the message shown in Figure 14-6.

Figure 14-6:
The

instance
message
is called

as part of
an object

and outputs
this simple
message.

 5. Close the Python Shell window.

Working with constructors
A constructor is a special kind of method that Python calls when it instanti-
ates an object using the definitions found in your class. Python relies on the
constructor to perform tasks such as initializing (assigning values to) any
instance variables that the object will need when it starts. Constructors can
also verify that there are enough resources for the object and perform any
other start-up task you can think of.

 The name of a constructor is always the same, __init__(). The constructor
can accept arguments when necessary to create the object. When you create a
class without a constructor, Python automatically creates a default construc-
tor for you that doesn’t do anything. Every class must have a constructor,
even if it simply relies on the default constructor. The following steps demon-
strate how to create a constructor:

276 Part III: Performing Common Tasks

 1. Open a Python Shell window.

 You see the familiar Python prompt.

 2. Type the following code (pressing Enter after each line and pressing
Enter twice after the last line):

class MyClass:
 Greeting = ""

 def __init__(self, Name="there"):
 self.Greeting = Name + "!"

 def SayHello(self):
 print("Hello {0}".format(self.Greeting))

 This example provides your first example of function overloading. In
this case, there are two versions of __init__(). The first doesn’t
require any special input because it uses the default value for the Name
of "there". The second requires a name as an input. It sets Greeting
to the value of this name, plus an exclamation mark. The SayHello()
method is essentially the same as previous examples in this chapter.

 Python doesn’t support true function overloading. Many strict adher-
ents to strict Object-Oriented Programming (OOP) principles consider
default values to be something different from function overloading.
However, the use of default values obtains the same result, and it’s the
only option that Python offers. In true function overloading, you see
multiple copies of the same function, each of which could process the
input differently.

 3. Type MyInstance = MyClass() and press Enter.

 Python creates an instance of MyClass named MyInstance.

 4. Type MyInstance.SayHello() and press Enter.

 You see the message shown in Figure 14-7. Notice that this message pro-
vides the default, generic greeting.

 5. Type MyInstance = MyClass(“Amy”) and press Enter.

 Python creates an instance of MyClass named MyInstance.

 6. Type MyInstance.SayHello() and press Enter.

 You see the message shown in Figure 14-8. Notice that this message pro-
vides a specific greeting.

 7. Close the Python Shell window.

277 Chapter 14: Creating and Using Classes

Figure 14-7:
The first ver­

sion of the
constructor

provides
a default

value for the
name.

Figure 14-8:
Supplying

the con­
structor

with a name
provides a

customized
output.

Working with variables
As mentioned earlier in the book, variables are storage containers that hold
data. When working with classes, you need to consider how the data is
stored and managed. A class can include both class variables and instance
variables. The class variables are defined as part of the class itself, while
instance variables are defined as part of methods. The following sections
show how to use both variable types.

278 Part III: Performing Common Tasks

Creating class variables
Class variables provide global access to data that your class manipulates in
some way. In most cases, you initialize global variables using the constructor
to ensure that they contain a known good value. The following steps demon-
strate how class variables work.

 1. Open a Python Shell window.

 You see the familiar Python prompt.

 2. Type the following code (pressing Enter after each line and pressing
Enter twice after the last line):

class MyClass:
 Greeting = ""

 def SayHello(self):
 print("Hello {0}".format(self.Greeting))

 This is a version of the code found in the “Working with constructors”
section of the chapter, but this version doesn’t include the constructor.
Normally you do include a constructor to ensure that the class variable
is initialized properly. However, this series of steps shows how class
variables can go wrong.

 3. Type MyClass.Greeting = “Zelda” and press Enter.

 This statement sets the value of Greeting to something other than the
value that you used when you created the class. Of course, anyone could
make this change. The big question is whether the change will take.

 4. Type MyClass.Greeting and press Enter.

 You see that the value of Greeting has changed, as shown in Figure 14-9.

 5. Type MyInstance = MyClass() and press Enter.

 Python creates an instance of MyClass named MyInstance.

Figure 14-9:
You can

change the
value of

Greeting.

279 Chapter 14: Creating and Using Classes

 6. Type MyInstance.SayHello() and press Enter.

 You see the message shown in Figure 14-10. The change that you made
to Greeting has carried over to the instance of the class. It’s true
that the use of a class variable hasn’t really caused a problem in this
example, but you can imagine what would happen in a real application if
someone wanted to cause problems.

 This is just a simple example of how class variables can go wrong. The
two concepts you should take away from this example are as follows:

	 •	Avoid	class	variables	when	you	can	because	they’re	inherently	unsafe.

	 •	Always	initialize	class	variables	to	a	known	good	value	in	the	con-
structor code.

 7. Close the Python Shell window.

Figure 14-10:
The

change to
Greeting

carries
over to the
instance of

the class.

Creating instance variables
Instance variables are always defined as part of a method. The input argu-
ments to a method are considered instance variables because they exist
only when the method exists. Using instance variables is usually safer than
using class variables because it’s easier to maintain control over them and
to ensure that the caller is providing the correct input. The following steps
show an example of using instance variables.

280 Part III: Performing Common Tasks

 1. Open a Python Shell window.

 You see the familiar Python prompt.

 2. Type the following code (pressing Enter after each line and pressing
Enter twice after the last line):

class MyClass:
 def DoAdd(self, Value1=0, Value2=0):
 Sum = Value1 + Value2
 print("The sum of {0} plus {1} is {2}."
 .format(Value1, Value2, Sum))

 In this case, you have three instance variables. The input arguments,
Value1 and Value2, have default values of 0, so DoAdd() can’t fail
simply because the user forgot to provide values. Of course, the user
could always supply something other than numbers, so you should
provide the appropriate checks as part of your code. The third instance
variable is Sum, which is equal to Value1 + Value2. The code simply
adds the two numbers together and displays the result.

 3. Type MyInstance = MyClass() and press Enter.

 Python creates an instance of MyClass named MyInstance.

 4. Type MyInstance.DoAdd(1, 4) and press Enter.

 You see the message shown in Figure 14-11. In this case, you see the sum
of adding 1 and 4.

Figure 14-11:
The output

is simply the
sum of two

numbers.

 5. Close the Python Shell window.

281 Chapter 14: Creating and Using Classes

Using methods with variable
argument lists
Sometimes you create methods that can take a variable number of argu-
ments. Handling this sort of situation is something Python does well. Here are
the two kinds of variable arguments that you can create:

 ✓ *args: Provides a list of unnamed arguments.

 ✓ **kwargs: Provides a list of named arguments.

 The actual names of the arguments don’t matter, but Python developers
use *args and **kwargs as a convention so that other Python developers
know that they’re a variable list of arguments. Notice that the first variable
argument has just one asterisk (*) associated with it, which means the argu-
ments are unnamed. The second variable has two asterisks, which means
that the arguments are named. The following steps demonstrate how to use
both approaches to writing an application. This example also appears with
the downloadable source code as VariableArgs.py.

 1. Open a Python File window.

 You see an editor in which you can type the example code.

 2. Type the following code into the window — pressing Enter after
each line:

class MyClass:
 def PrintList1(*args):
 for Count, Item in enumerate(args):
 print("{0}. {1}".format(Count, Item))

 def PrintList2(**kwargs):
 for Name, Value in kwargs.items():
 print("{0} likes {1}".format(Name, Value))

MyClass.PrintList1("Red", "Blue", "Green")
MyClass.PrintList2(George="Red", Sue="Blue",
 Zarah="Green")

 For the purposes of this example, you’re seeing the arguments imple-
mented as part of a class method. However, you can use them just as
easily with an instance method.

 Look carefully at PrintList1() and you see a new method of using
a for loop to iterate through a list. In this case, the enumerate()
function outputs both a count (the loop count) and the string that was
passed to the function.

282 Part III: Performing Common Tasks

 The PrintList2() function accepts a dictionary input. Just as with
PrintList1(), this list can be any length. However, you must process
the items() found in the dictionary to obtain the individual values.

 3. Choose Run➪Run Module.

 You see the output shown in Figure 14-12. The individual lists can be of
any length. In fact, in this situation, playing with the code to see what
you can do with it is a good idea. For example, try mixing numbers and
strings with the first list to see what happens. Try adding Boolean values
as well. The point is that using this technique makes your methods
incredibly flexible if all you want is a list of values as input.

Figure 14-12:
The code

can process
any number
of entries in

the list.

Overloading operators
In some situations, you want to be able to do something special as the result
of using a standard operator such as add (+). In fact, sometimes Python
doesn’t provide a default behavior for operators because it has no default
to implement. No matter what the reason might be, overloading operators
makes it possible to assign new functionality to existing operators so that
they do what you want, rather than what Python intended. The following
steps demonstrate how to overload an operator and use it as part of an appli-
cation. This example also appears with the downloadable source code as
OverloadOperator.py.

 1. Open a Python File window.

 You see an editor in which you can type the example code.

283 Chapter 14: Creating and Using Classes

 2. Type the following code into the window — pressing Enter after
each line:

class MyClass:
 def __init__(self, *args):
 self.Input = args

 def __add__(self, Other):
 Output = MyClass()
 Output.Input = self.Input + Other.Input
 return Output

 def __str__(self):
 Output = ""
 for Item in self.Input:
 Output += Item
 Output += " "
 return Output

Value1 = MyClass("Red", "Green", "Blue")
Value2 = MyClass("Yellow", "Purple", "Cyan")
Value3 = Value1 + Value2

print("{0} + {1} = {2}"
 .format(Value1, Value2, Value3))

 The example demonstrates a few different techniques. The construc-
tor, __init__(), demonstrates a method for creating an instance vari-
able attached to the self object. You can use this approach to create as
many variables as needed to support the instance.

 When you create your own classes, no + operator is defined until you
define one, in most cases. The only exception is when you inherit
from an existing class that already has the + operator defined (see the
“Extending Classes to Make New Classes” section, later in this chapter,
for details). In order to add two MyClass entries together, you must
define the __add__() method, which equates to the + operator.

 The code used for the __add__() method may look a little odd, too, but
you need to think about it one line at a time. The code begins by creat-
ing a new object, Output, from MyClass. Nothing is added to Output
at this point — it’s a blank object. The two objects that you want to add,
self.Input and Other.Input, are actually tuples. (See “Working with
Tuples,” in Chapter 13, for more details about tuples.) The code places
the sum of these two objects into Output.Input. The __add__()
method then returns the new combined object to the caller.

284 Part III: Performing Common Tasks

 Of course, you may want to know why you can’t simply add the two
inputs together as you would a number. The answer is that you’d end up
with a tuple as an output, rather than a MyClass as an output. The type
of the output would be changed, and that would also change any use of
the resulting object.

 To print MyClass properly, you also need to define a __str__() method.
This method converts a MyClass object into a string. In this case, the
output is a space-delimited string (in which each of the items in the string
is separated from the other items by a space) containing each of the
values found in self.Input. Of course, the class that you create can
output any string that fully represents the object.

 The main procedure creates two test objects, Value1 and Value2.
It adds them together and places the result in Value3. The result is
printed onscreen.

 3. Choose Run➪Run Module.

 Figure 14-13 shows the result of adding the two objects together, con-
verting them to strings, and then printing the result. It’s a lot of code for
such a simple output statement, but the result definitely demonstrates
that you can create classes that are self-contained and fully functional.

Figure 14-13:
The result of

adding two
MyClass

objects is a
third object
of the same

type.

Creating a Class
All the previous material in this chapter has helped prepare you for creat-
ing an interesting class of your own. In this case, you create a class that you
place into an external module and eventually access within an application.
Listing 14-1 shows the code that you need to create the class. This example
also appears with the downloadable source code as MyClass.py.

285 Chapter 14: Creating and Using Classes

Listing 14-1: Creating an External Class

class MyClass:
 def __init__(self, Name="Sam", Age=32):
 self.Name = Name
 self.Age = Age

 def GetName(self):
 return self.Name

 def SetName(self, Name):
 self.Name = Name

 def GetAge(self):
 return self.Age

 def SetAge(self, Age):
 self.Age = Age

 def __str__(self):
 return "{0} is aged {1}.".format(self.Name,
 self.Age)

In this case, the class begins by creating an object with two instance vari-
ables: Name and Age. If the user fails to provide these values, they default to
Sam and 32.

 This example provides you with a new class feature. Most developers call
this feature an accessor. Essentially, it provides access to an underlying value.
There are two types of accessors: getters and setters. Both GetName() and
GetAge() are getters. They provide read-only access to the underlying value.
The SetName() and SetAge() methods are setters, which provide write-
only access to the underlying value. Using a combination of methods like this
allows you to check inputs for correct type and range, as well as verify that
the caller has permission to view the information.

As with just about every other class you create, you need to define
the __str__() method if you want the user to be able to print the
object. In this case, the class provides formatted output that lists both
of the instance variables.

Using the Class in an Application
Most of the time, you use external classes when working with Python. It
isn’t very often that a class exists within the confines of the application file
because the application would become large and unmanageable. In addition,

286 Part III: Performing Common Tasks

reusing the class code in another application would be difficult. The follow-
ing steps help you use the MyClass class that you created in the previous
section. This example also appears with the downloadable source code as
MyClassTest.py.

 1. Open a Python File window.

 You see an editor in which you can type the example code.

 2. Type the following code into the window — pressing Enter after
each line:

import MyClass

SamsRecord = MyClass.MyClass()
AmysRecord = MyClass.MyClass("Amy", 44)

print(SamsRecord.GetAge())
SamsRecord.SetAge(33)

print(AmysRecord.GetName())
AmysRecord.SetName("Aimee")

print(SamsRecord)
print(AmysRecord)

 The example code begins by importing the MyClass module. The
module name is the name of the file used to store the external code, not
the name of the class. A single module can contain multiple classes, so
always think of the module as being the actual file that is used to hold
one or more classes that you need to use with your application.

 After the module is imported, the application creates two MyClass
objects. Notice that you use the module name first, followed by the
class name. The first object, SamsRecord, uses the default settings. The
second object, AmysRecord, relies on custom settings.

 Sam has become a year old. After the application verifies that the age
does need to be updated, it updates Sam’s age.

 Somehow, HR spelled Aimee’s name wrong. It turns out that Amy is an
incorrect spelling. Again, after the application verifies that the name is
wrong, it makes a correction to AmysRecord. The final step is to print
both records in their entirety.

 3. Choose Run➪Run Module.

 The application displays a series of messages as it puts MyClass through
its paces, as shown in Figure 14-14. At this point, you know all the essen-
tials of creating great classes.

287 Chapter 14: Creating and Using Classes

Figure 14-14:
The output
shows that

the class
is fully

functional.

Extending Classes to
Make New Classes

As you might imagine, creating a fully functional, production-grade class (one
that is used in a real-world application actually running on a system that is
accessed by users) is time consuming because real classes perform a lot of
tasks. Fortunately, Python supports a feature called inheritance. By using
inheritance, you can obtain the features you want from a parent class when
creating a child class. Overriding the features that you don’t need and adding
new features lets you create new classes relatively fast and with a lot less
effort on your part. In addition, because the parent code is already tested,
you don’t have to put quite as much effort into ensuring that your new class
works as expected. The following sections show how to build and use classes
that inherit from each other.

Building the child class
Parent classes are normally supersets of something. For example, you might
create a parent class named Car and then create child classes of various car
types around it. In this case, you build a parent class named Animal and
use it to define a child class named Chicken. Of course, you can easily add
other child classes after you have Animal in place, such as a Gorilla class.
However, for this example, you build just the one parent and one child class,
as shown in Listing 14-2. This example also appears with the downloadable
source code as Animals.py.

288 Part III: Performing Common Tasks

Listing 14-2: Building a Parent and Child Class

class Animal:
 def __init__(self, Name="", Age=0, Type=""):
 self.Name = Name
 self.Age = Age
 self.Type = Type

 def GetName(self):
 return self.Name

 def SetName(self, Name):
 self.Name = Name

 def GetAge(self):
 return self.Age

 def SetAge(self, Age):
 self.Age = Age

 def GetType(self):
 return self.Type

 def SetType(self, Type):
 self.Type = Type

 def __str__(self):
 return "{0} is a {1} aged {2}".format(self.Name,
 self.Type,
 self.Age)

class Chicken(Animal):
 def __init__(self, Name="", Age=0):
 self.Name = Name
 self.Age = Age
 self.Type = "Chicken"

 def SetType(self, Type):
 print("Sorry, {0} will always be a {1}"
 .format(self.Name, self.Type))

 def MakeSound(self):
 print("{0} says Cluck, Cluck,

Cluck!".format(self.Name))

289 Chapter 14: Creating and Using Classes

The Animal class tracks three characteristics: Name, Age, and Type. A produc-
tion application would probably track more characteristics, but these char-
acteristics do everything needed for this example. The code also includes the
required accessors for each of the characteristics. The __str__() method
completes the picture by printing a simple message stating the animal
characteristics.

The Chicken class inherits from the Animal class. Notice the use of Animal
in parentheses after the Chicken class name. This addition tells Python that
Chicken is a kind of Animal, something that will inherit the characteristics
of Animal.

Notice that the Chicken constructor accepts only Name and Age. The user
doesn’t have to supply a Type value because you already know that it’s a
chicken. This new constructor overrides the Animal constructor. The three
attributes are still in place, but Type is supplied directly in the Chicken
constructor.

Someone might try something funny, such as setting her chicken up as a
gorilla. With this in mind, the Chicken class also overrides the SetType()
setter. If someone tries to change the Chicken type, that user gets a message
rather than the attempted change. Normally, you handle this sort of problem
by using an exception, but the message works better for this example by
making the coding technique clearer.

Finally, the Chicken class adds a new feature, MakeSound(). Whenever
someone wants to hear the sound a chicken makes, he can call MakeSound()
to at least see it printed on the screen.

Testing the class in an application
Testing the Chicken class also tests the Animal class to some extent. Some
functionality is different, but some classes aren’t really meant to be used.
The Animal class is simply a parent for specific kinds of animals, such as
Chicken. The following steps demonstrate the Chicken class so that you
can see how inheritance works. This example also appears with the down-
loadable source code as ListStack.py.

 1. Open a Python File window.

 You see an editor in which you can type the example code.

290 Part III: Performing Common Tasks

 2. Type the following code into the window — pressing Enter after
each line:

import Animals

MyChicken = Animals.Chicken("Sally", 2)
print(MyChicken)
MyChicken.SetAge(MyChicken.GetAge() + 1)
print(MyChicken)
MyChicken.SetType("Gorilla")
print(MyChicken)
MyChicken.MakeSound()

 The first step is to import the Animals module. Remember that you
always import the filename, not the class. The Animals.py file actually
contains two classes in this case: Animal and Chicken.

 The example creates a chicken, MyChicken, named Sally, who is age 2.
It then starts to work with MyChicken in various ways. For example,
Sally has a birthday, so the code updates Sally’s age by 1. Notice how the
code combines the use of a setter, SetAge(), with a getter, GetAge(),
to perform the task. After each change, the code displays the resulting
object values for you. The final step is to let Sally say a few words.

 3. Choose Run➪Run Module.

 You see each of the steps used to work with MyChicken, as shown in
Figure 14-15. As you can see, using inheritance can greatly simplify the
task of creating new classes when enough of the classes have commonal-
ity so that you can create a parent class that contains some amount of
the code.

Figure 14-15:
Sally has a

birthday and
then says a
few words.

Part IV
Performing Advanced Tasks

 See an example of how you can interact with the directory structure of your plat­
form at www.dummies.com/extras/beginningprogrammingwith
python.

In this part . . .
 ✓ Create a file.

 ✓ Read a file.

 ✓ Update a file.

 ✓ Delete a file.

 ✓ Send an email.

Chapter 15

Storing Data in Files
In This Chapter
▶ Considering how permanent storage works with applications

▶ Deciding how to work with permanently stored content

▶ Writing to a file for the first time

▶ Obtaining content from the disk

▶ Changing file content as needed

▶ Removing a file from disk

U
ntil now, application development might seem to be all about present-
ing information onscreen. Actually, applications center around a need

to work with data in some way. Data is the focus of all applications because
it’s the data that users are interested in. Be prepared for a huge disappoint-
ment the first time you present a treasured application to a user base and
find that the only thing users worry about is whether the application will
help them leave work on time after creating a presentation. The fact is, the
best applications are invisible, but they present data in the most appropriate
manner possible for a user’s needs.

If data is the focus of applications, then storing the data in a permanent manner
is equally important. For most developers, data storage revolves around a
permanent media such as a hard drive, Solid State Drive (SSD), Universal Serial
Bus (USB) flash drive, or some other methodology. (Even cloud-based solutions
work fine, but you won’t see them used in this book because they require dif-
ferent programming techniques that are beyond the book’s scope.) The data in
memory is temporary because it lasts only as long as the machine is running. A
permanent storage device holds onto the data long after the machine is turned
off so that it can be retrieved during the next session.

 In addition to permanent storage, this chapter also helps you understand the
four basic operations that you can perform on files: Create, Read, Update,
and Delete (CRUD). You see the CRUD acronym used quite often in database
circles, but it applies equally well to any application. No matter how your
application stores the data in a permanent location, it must be able to perform
these four tasks in order to provide a complete solution to the user. Of course,

294 Part IV: Performing Advanced Tasks

CRUD operations must be performed in a secure, reliable, and controlled
manner. This chapter also helps you set a few guidelines for how access must
occur to ensure data integrity (a measure of how often data errors occur when
performing CRUD operations).

Understanding How Permanent
Storage Works

You don’t need to understand absolutely every detail about how perma-
nent storage works in order to use it. For example, just how the drive spins
(assuming that it spins at all) is unimportant. However, most platforms
adhere to a basic set of principles when it comes to permanent storage.
These principles have developed over a period of time, starting with main-
frame systems in the earliest days of computing.

Data is stored in files. You probably know about files already because every
useful application out there relies on them. For example, when you open a
document in your word processor, you’re actually opening a data file contain-
ing the words that you or someone else has typed.

Files typically have an extension associated with them that defines the file type.
The extension is generally standardized for any given application and is sepa-
rated from the filename by a period, such as MyData.txt. In this case, .txt is
the file extension, and you probably have an application on your machine for
opening such files. In fact, you can likely choose from a number of applications
to perform the task because the .txt file extension is relatively common.

Internally, files structure the data in some specific manner to make it easy to
write and read data to and from the file. Any application you write must know
about the file structure in order to interact with the data the file contains. The
examples in this chapter use a simple file structure to make it easy to write the
code required to access them, but file structures can become quite complex.

Files would be nearly impossible to find if you placed them all in the same
location on the hard drive. Consequently, files are organized into directories.
Many newer computer systems also use the term folder for this organizational
feature of permanent storage. No matter what you call it, permanent storage
relies on directories to help organize the data and make individual files signifi-
cantly easier to find. To find a particular file so that you can open it and inter-
act with the data it contains, you must know which directory holds the file.

Directories are arranged in hierarchies that begin at the uppermost level
of the hard drive. For example, when working with the downloadable
source code for this book, you find the code for the entire book in the BP4D

295 Chapter 15: Storing Data in Files

directory. However, this directory doesn’t actually contain any source code
files. To locate the source code files, you must open one of the chapter direc-
tories contained in the BP4D directory first. To locate the source code files
for this chapter, you look in the BP4D\Chapter 15 directory.

 Notice that I’ve used a backslash (\) to separate the directory levels. Some
platforms use the forward slash (/), while others use the backslash. You can
read about this issue on my blog at http://blog.johnmuellerbooks.
com/2014/03/10/backslash-versus-forward-slash/. The book uses
backslashes when appropriate and assumes that you’ll make any required
changes for your platform.

A final consideration for Python developers (at least for this book) is that the
hierarchy of directories is called a path. You see the term path in a few places
in this book because Python must be able to find any resources you want to
use based on the path you provide. For example, C:\ BP4D\Chapter 15 is
the complete path to the source code for this chapter on a Windows system.
A path that traces the entire route that Python must search is called an abso-
lute path. An incomplete path that traces the route to a resource using the
current directory as a starting point is called a relative path.

Creating Content for Permanent Storage
A file can contain structured or unstructured data. An example of structured
data is a database in which each record has specific information in it. An
employee database would include columns for name, address, employee ID,
and so on. Each record would be an individual employee and each employee
record would contain the name, address, and employee ID fields. An example
of unstructured data is a word processing file whose text can contain any con-
tent in any order. There is no required order for the content of a paragraph,
and sentences can contain any number of words. However, in both cases, the
application must know how to perform CRUD operations with the file. This
means that the content must be prepared in such a manner that the applica-
tion can both write to and read from the file.

Even with word processing files, the text must follow a certain series of rules.
Assume for a moment that the files are simple text. Even so, every paragraph
must have some sort of delimiter telling the application to begin a new para-
graph. The application reads the paragraph until it sees this delimiter, and
then it begins a new paragraph. The more that the word processor offers in
the way of features, the more structured the output becomes. For example,
when the word processor offers a method of formatting the text, the format-
ting must appear as part of the output file.

296 Part IV: Performing Advanced Tasks

 The cues that make content usable for permanent storage are often hidden
from sight. All you see when you work with the file is the data itself. The for-
matting remains invisible for a number of reasons, such as these:

 ✓ The cue is a control character, such as a carriage return or linefeed, that
is normally invisible by default at the platform level.

 ✓ The application relies on special character combinations, such as commas
and double quotes, to delimit the data entries. These special character
combinations are consumed by the application during reading.

 ✓ Part of the reading process converts the character to another form, such
as when a word processing file reads in content that is formatted. The
formatting appears onscreen, but in the background the file contains
special characters to denote the formatting.

 ✓ The file is actually in an alternative format, such as eXtensible Markup
Language (XML) (see http://www.w3schools.com/xml/default.
ASP for information about XML). The alternative format is interpreted
and presented onscreen in a manner the user can understand.

 Other rules likely exist for formatting data. For example, Microsoft actually
uses a .zip file to hold its latest word processing files (the .docx) file. The
use of a compressed file catalog, such as .zip, makes storing a great deal of
information in a small space possible. It’s interesting to see how others store
data because you can often find more efficient and secure means of data stor-
age for your own applications.

Now that you have a better idea of what could happen as part of prepar-
ing content for disk storage, it’s time to look at an example. In this case, the
formatting strategy is quite simple. All this example does is accept input,
format it for storage, and present the formatted version onscreen (rather
than save it to disk just yet). This example also appears with the download-
able source code as FormattedData.py (which contains the class used to
format the information) and FormattedDataTest.py (which outputs the
data onscreen).

 1. Open a Python File window.

 You see an editor in which you can type the example code.

 2. Type the following code into the window — pressing Enter after
each line:

class FormatData:
 def __init__(self, Name="", Age=0, Married=False):
 self.Name = Name
 self.Age = Age
 self.Married = Married

297 Chapter 15: Storing Data in Files

 def __str__(self):
 OutString = "'{0}', {1}, {2}".format(
 self.Name,
 self.Age,
 self.Married)
 return OutString

 This is a shortened class. Normally, you’d add accessors (getter and
setter methods) and error-trapping code. (Remember that getter meth-
ods provide read-only access to class data and setter methods provide
write-only access to class data.) However, the class works fine for the
demonstration.

 The main feature to look at is the __str__() function. Notice that it
formats the output data in a specific way. The string value, self.
Name, is enclosed in single quotes. Each of the values is also sepa-
rated by a comma. This is actually a form of a standard output format,
comma-separated value (CSV), that is used on a wide range of plat-
forms because it’s easy to translate and is in plain text, so nothing
special is needed to work with it.

 3. Save the code as FormattedData.py.

 4. Open another Python File window.

 5. Type the following code into the window — pressing Enter after
each line:

from FormattedData import FormatData

NewData = [FormatData("George", 65, True),
 FormatData("Sally", 47, False),
 FormatData("Doug", 52, True)]

for Entry in NewData:
 print(Entry)

 The code begins by importing just the FormatData class from
FormattedData. In this case, it doesn’t matter because the
FormattedData module contains only a single class. However,
you need to keep this technique in mind when you need only one
class from a module.

 Most of the time, you work with multiple records when you save data
to disk. You might have multiple paragraphs in a word processed docu-
ment or multiple records, as in this case. The example creates a list of
records and places them in NewData. In this case, NewData represents
the entire document. The representation will likely take other forms in a
production application, but the idea is the same.

298 Part IV: Performing Advanced Tasks

 Any application that saves data goes through some sort of output loop.
In this case, the loop simply prints the data onscreen. However, in the
upcoming sections, you actually output the data to a file.

 6. Choose Run➪Run Module.

 You see the output shown in Figure 15-1. This is a representation of how
the data would appear in the file. In this case, each record is separated
by a carriage return and linefeed control character combination. That
is, George, Sally, and Doug are all separate records in the file. Each field
(data element) is separated by a comma. Text fields appear in quotes so
that they aren’t confused with other data types.

Figure 15-1:
The example

presents
how the

data might
look in CSV

format.

Creating a File
Any data that the user creates and wants to work with for more than one
session must be put on some sort of permanent media. Creating a file and
then placing the data into it is an essential part of working with Python. You
can use the following steps to create code that will write data to the hard
drive. This example also appears with the downloadable source code as
FormattedData.py and CreateCSV.py.

 1. Open the previously saved FormattedData.py file.

 You see the code originally created in the “Creating Content for Permanent
Storage” section, earlier in this chapter, appear onscreen. This example
makes modifications to the original code so that the class can now save a
file to disk.

 2. Add the following import statement to the top of the file:

import csv

 The csv module contains everything needed to work with CSV files.

299 Chapter 15: Storing Data in Files

 Python actually supports a huge number of file types natively, and
libraries that provide additional support are available. If you have a
file type that you need to support using Python, you can usually find a
third-party library to support it when Python doesn’t support it natively.
Unfortunately, no comprehensive list of supported files exists, so you
need to search online to find how Python supports the file you need.
The documentation divides the supported files by types and doesn’t
provide a comprehensive list. For example, you can find all the archive
formats at https://docs.python.org/3/library/archiving.
html and the miscellaneous file formats at https://docs.python.
org/3/library/fileformats.html.

 3. Type the following code into the window at the end of the existing
code — pressing Enter after each line:

def SaveData(Filename = "", DataList = []):
 with open(Filename,
 "w", newline='\n') as csvfile:
 DataWriter = csv.writer(
 csvfile,
 delimiter='\n',
 quotechar=" ",
 quoting=csv.QUOTE_NONNUMERIC)
 DataWriter.writerow(DataList)
 csvfile.close()
 print("Data saved!")

 Make absolutely certain that SaveData() is properly indented. If you
add SaveData() to the file but don’t indent it under the FormatData
class, Python will treat the function as a separate function and not as part
of FormatData. The easiest way to properly indent the SaveData()
function is to follow the same indentation used for the __init__()
and __str__() functions.

 Notice that the method accepts two arguments as input: a filename
used to store the data and a list of items to store. This is a class method
rather than an instance method. Later in this procedure, you see how
using a class method is an advantage. The DataList argument defaults
to an empty list so that if the caller doesn’t pass anything at all, the
method won’t throw an exception. Instead, it produces an empty output
file. Of course, you can also add code to detect an empty list as an error,
if desired.

 The with statement tells Python to perform a series of tasks with a
specific resource — an open csvfile named Testfile.csv. The
open() function accepts a number of inputs depending in how you use
it. For this example, you open it in write mode (signified by the w). The
newline attribute tells Python to treat the \n control character (line-
feed) as a newline character.

300 Part IV: Performing Advanced Tasks

 In order to write output, you need a writer object. The DataWriter object
is configured to use csvfile as the output file, to use /n as the record
character, to quote records using a space, and to provide quoting only
on nonnumeric values. This setup will produce some interesting results
later, but for now, just assume that this is what you need to make the
output usable.

 Actually writing the data takes less effort than you might think. A single
call to DataWriter.writerow() with the DataList as input is all
you need. Always close the file when you get done using it. This action
flushes the data (makes sure that it gets written) to the hard drive. The
code ends by telling you that the data has been saved.

 4. Save the code as FormattedData.py.

 5. Open a new Python File window.

 You see an editor in which you can type the example code.

 6. Type the following code into the window — pressing Enter after
each line:

from FormattedData import FormatData

NewData = [FormatData("George", 65, True),
 FormatData("Sally", 47, False),
 FormatData("Doug", 52, True)]

FormatData.SaveData("TestFile.csv", NewData)

 This example should look similar to the one you created in the “Creating
Content for Permanent Storage” section, earlier in the chapter. You still
create NewData as a list. However, instead of displaying the informa-
tion onscreen, you send it to a file instead by calling FormatData.
SaveData(). This is one of those situations in which using an instance
method would actually get in the way. To use an instance method, you
would first need to create an instance of FormatData that wouldn’t
actually do anything for you.

 7. Choose Run➪Run Module.

 The application runs, and you see a data saved message as output. Of
course, that doesn’t tell you anything about the data. In the source code
file, you see a new file named Testfile.csv. Most platforms have a
default application that opens such a file. With Windows, you can open it
using Excel and WordPad (among other applications). Figure 15-2 shows
the output in Excel, while Figure 15-3 shows it in WordPad. In both cases,
the output looks surprisingly similar to the output shown in Figure 15-1.

301 Chapter 15: Storing Data in Files

Figure 15-2:
The appli­

cation
output as it
appears in

Excel.

Figure 15-3:
The appli­

cation
output as it
appears in
WordPad.

Reading File Content
At this point, the data is on the hard drive. Of course, it’s nice and safe there,
but it really isn’t useful because you can’t see it. To see the data, you must
read it into memory and then do something with it. The following steps show
how to read data from the hard drive and into memory so that you can dis-
play it onscreen. This example also appears with the downloadable source
code as FormattedData.py and ReadCSV.py.

 1. Open the previously saved FormattedData.py file.

 You see the code originally created in the “Creating a File” section, ear-
lier in this chapter, appear onscreen. This example makes modifications
to the original code so that the class can now save a file to disk.

302 Part IV: Performing Advanced Tasks

 2. Type the following code into the window at the end of the existing
code — pressing Enter after each line:

def ReadData(Filename = ""):
 with open(Filename,
 "r", newline='\n') as csvfile:
 DataReader = csv.reader(
 csvfile,
 delimiter="\n",
 quotechar=" ",
 quoting=csv.QUOTE_NONNUMERIC)

 Output = []
 for Item in DataReader:
 Output.append(Item[0])

 csvfile.close()
 print("Data read!")
 return Output

 As previously mentioned, make absolutely certain that ReadData() is
properly indented. If you add ReadData() to the file but don’t indent
it under the FormatData class, Python will treat the function as a
separate function and not as part of FormatData. The easiest way to
properly indent ReadData() is to follow the same indentation used for
the __init__() and __str__() functions.

 Opening a file for reading is much like opening it for writing. The big dif-
ference is that you need to specify r (for read) instead of w (for write) as
part of the csv.reader() constructor. Otherwise, the arguments are
precisely the same and work the same.

 It’s important to remember that you’re starting with a text file when
working with a .csv file. Yes, it has delimiters, but it’s still text. When
reading the text into memory, you must rebuild the Python structure. In
this case, Output is an empty list when it starts.

 The file currently contains three records that are separated by the /n con-
trol character. Python reads each record in using a for loop. Notice the
odd use of Item[0]. When Python reads the record, it sees the nontermi-
nating entries (those that aren’t last in the file) as actually being two list
entries. The first entry contains data; the second is blank. You want only
the first entry. These entries are appended to Output so that you end up
with a complete list of the records that appear in the file.

 As before, make sure that you close the file when you get done with it.
The method prints a data read message when it finishes. It then returns
Output (a list of records) to the caller.

 3. Save the code as FormattedData.py.

 4. Open a Python File window.

 You see an editor in which you can type the example code.

303 Chapter 15: Storing Data in Files

 5. Type the following code into the window — pressing Enter after
each line:

from FormattedData import FormatData

NewData = FormatData.ReadData("TestFile.csv")

for Entry in NewData:
 print(Entry)

 The ReadCSV.py code begins by importing the FormatData class. It then
creates a NewData object, a list, by calling FormatData.ReadData().
Notice that the use of a class method is the right choice in this case as
well because it makes the code shorter and simpler. The application then
uses a for loop to display the NewData content.

 6. Choose Run➪Run Module.

 You see the output shown in Figure 15-4. Notice that this output looks
similar to the output in Figure 15-1, even though the data was written to
disk and read back in. This is how applications that read and write data
are supposed to work. The data should appear the same after you read it
in as it did when you wrote it out to disk. Otherwise, the application is a
failure because it has modified the data.

Figure 15-4:
The applica­

tion input
after it

has been
processed.

Updating File Content
Some developers treat updating a file as something complex. It can be complex if
you view it as a single task. However, updates actually consist of three activities:

 1. Read the file content into memory.

 2. Modify the in-memory presentation of the data.

 3. Write the resulting content to permanent storage.

304 Part IV: Performing Advanced Tasks

In most applications, you can further break down the second step of modify-
ing the in-memory presentation of the data. An application can provide some
or all of these features as part of the modification process:

 ✓ Provide an onscreen presentation of the data.

 ✓ Allow additions to the data list.

 ✓ Allow deletions from the data list.

 ✓ Make changes to existing data, which can actually be implemented by
adding a new record with the changed data and deleting the old record.

So far in this chapter, you have performed all but one of the activities in these
two lists. You’ve already read file content and written file content. In the mod-
ification list, you’ve added data to a list and presented the data onscreen.
The only interesting activity that you haven’t performed is deleting data from
a list. The modification of data is often performed as a two-part process of
creating a new record that starts with the data from the old record and then
deleting the old record after the new record is in place in the list.

 Don’t get into a rut by thinking that you must perform every activity men-
tioned in this section for every application. A monitoring program wouldn’t
need to display the data onscreen. In fact, doing so might be harmful (or at
least inconvenient). A data logger only creates new entries — it never deletes
or modifies them. An e-mail application usually allows the addition of new
records and deletion of old records, but not modification of existing records.
On the other hand, a word processor implements all the features mentioned.
What you implement and how you implement it depends solely on the kind of
application you create.

Separating the user interface from the activities that go on behind the user
interface is important. To keep things simple, this example focuses on what
needs to go on behind the user interface to make updates to the file you cre-
ated in the “Creating a File” section, earlier in this chapter. The following
steps demonstrate how to read, modify, and write a file in order to update
it. The updates consist of an addition, a deletion, and a change. To allow
you to run the application more than once, the updates are actually sent to
another file. This example also appears with the downloadable source code
as FormattedData.py and UpdateCSV.py.

 1. Open a Python File window.

 You see an editor in which you can type the example code.

 2. Type the following code into the window — pressing Enter after
each line:

from FormattedData import FormatData
import os.path

305 Chapter 15: Storing Data in Files

if not os.path.isfile("Testfile.csv"):
 print("Please run the CreateFile.py example!")
 quit()

NewData = FormatData.ReadData("TestFile.csv")
for Entry in NewData:
 print(Entry)

print("\r\nAdding a record for Harry.")
NewRecord = "'Harry', 23, False"
NewData.append(NewRecord)
for Entry in NewData:
 print(Entry)

print("\r\nRemoving Doug's record.")
Location = NewData.index("'Doug', 52, True")
Record = NewData[Location]

NewData.remove(Record)
for Entry in NewData:
 print(Entry)

print("\r\nModifying Sally's record.")
Location = NewData.index("'Sally', 47, False")
Record = NewData[Location]
Split = Record.split(",")
NewRecord = FormatData(Split[0].replace("'", ""),
 int(Split[1]),
 bool(Split[2]))
NewRecord.Married = True
NewRecord.Age = 48
NewData.append(NewRecord.__str__())
NewData.remove(Record)
for Entry in NewData:
 print(Entry)

FormatData.SaveData("ChangedFile.csv", NewData)

 This example has quite a bit going on. First, it checks to ensure that the
Testfile.csv file is actually present for processing. This is a check that
you should always perform when you expect a file to be present. In this
case, you aren’t creating a new file, you’re updating an existing file, so
the file must be present. If the file isn’t present, the application ends.

 The next step is to read the data into NewData. This part of the process
looks much like the data reading example earlier in the chapter.

 You have already seen code for using list functions in Chapter 12. This
example uses those functions to perform practical work. The append()
function adds a new record to NewData. However, notice that the data
is added as a string, not as a FormatData object. The data is stored as

306 Part IV: Performing Advanced Tasks

strings on disk, so that’s what you get when the data is read back in. You
can either add the new data as a string or create a FormatData object
and then use the __str__() method to output the data as a string.

 The next step is to remove a record from NewData. To perform this task,
you must first find the record. Of course, that’s easy when working with
just four records (remember that NewData now has a record for Harry in
it). When working with a large number of records, you must first search
for the record using the index() function. This act provides you with
a number containing the location of the record, which you can then use
to retrieve the actual record. After you have the actual record, you can
remove it using the remove() function.

 Modifying Sally’s record looks daunting at first, but again, most of this
code is part of dealing with the string storage on disk. When you obtain
the record from NewData, what you receive is a single string with all
three values in it. The split() function produces a list containing the
three entries as strings, which still won’t work for the application. In
addition, Sally’s name is enclosed in both double and single quotes.

 The simplest way to manage the record is to create a FormatData
object and to convert each of the strings into the proper form. This
means removing the extra quotes from the name, converting the
second value to an int, and converting the third value to a bool. The
FormatData class doesn’t provide accessors, so the application mod-
ifies both the Married and Age fields directly. Using accessors (getter
methods that provide read-only access and setter methods that pro-
vide write-only access) is a better policy.

 The application then appends the new record to and removes the existing
record from NewData. Notice how the code uses NewRecord.__str__()
to convert the new record from a FormatData object to the required
string.

 The final act is to save the changed record. Normally, you’d use the
same file to save the data. However, the example saves the data to a dif-
ferent file in order to allow examination of both the old and new data.

 3. Choose Run➪Run Module.

 You see the output shown in Figure 15-5. Notice that the application
lists the records after each change so that you can see the status of
NewData. This is actually a useful troubleshooting technique for your
own applications. Of course, you want to remove the display code
before you release the application to production.

 4. Open the ChangedFile.csv file using an appropriate application.

 You see output similar to that shown in Figure 15-6. This output is shown
using WordPad, but the data won’t change when you use other appli-
cations. So, even if your screen doesn’t quite match Figure 15-6, you
should still see the same data.

307 Chapter 15: Storing Data in Files

Figure 15-5:
The applica­

tion shows
each of the

modifica­
tions in turn.

Figure 15-6:
The updated

information
appears as
expected in
Changed

File.csv.

308 Part IV: Performing Advanced Tasks

Deleting a File
The previous section of this chapter, “Updating File Content,” explains how
to add, delete, and update records in a file. However, at some point you
may need to delete the file. The following steps describe how to delete files
that you no longer need. This example also appears with the downloadable
source code as DeleteCSV.py.

 1. Open a Python File window.

 You see an editor in which you can type the example code.

 2. Type the following code into the window — pressing Enter after
each line:

import os

os.remove("ChangedFile.csv")
print("File Removed!")

 The task looks simple in this case, and it is. All you need to do to remove
a file is call os.remove() with the appropriate filename and path (as
needed, Python defaults to the current directory, so you don’t need to
specify a path if the file you want to remove is in the default directory).
The ease with which you can perform this task is almost scary because
it’s too easy. Putting safeguards in place is always a good idea. You may
want to remove other items, so here are other functions you should
know about:

	 •	os.rmdir(): Removes the specified directory. The directory must
be empty or Python will display an exception message.

	 •	shutil.rmtree(): Removes the specified directory, all subdirec-
tories, and all files. This function is especially dangerous because
it removes everything without checking (Python assumes that
you know what you’re doing). As a result, you can easily lose data
using this function.

 3. Choose Run➪Run Module.

 The application displays the File Removed! message. When you look
in the directory that originally contained the ChangedFile.csv file,
you see that the file is gone.

Chapter 16

Sending an E-Mail
In This Chapter
▶ Defining the series of events for sending an e-mail

▶ Developing an e-mail application

▶ Testing the e-mail application

T
his chapter helps you understand the process of sending an e-mail using
Python. More important, this chapter is generally about helping you

understand what happens when you communicate outside the local PC. Even
though this chapter is specifically about e-mail, it also contains principles
you can use when performing other tasks. For example, when working with
an external service, you often need to create the same sort of packaging as
you do for an e-mail. So, the information you see in this chapter can help you
understand all sorts of communication needs.

To make working with e-mail as easy as possible, this chapter uses standard
mail as a real-world equivalent of e-mail. The comparison is apt. E-mail was
actually modeled on real-world mail. Originally, the term e-mail was used for
any sort of electronic document transmission, and some forms of it required
the sender and recipient to be online at the same time. As a result, you may
find some confusing references online about the origins and development
of e-mail. This chapter views e-mail as it exists today — as a storing and for-
warding mechanism for exchanging documents of various types.

The examples in this chapter rely on the availability of a Simple Mail Transfer
Protocol (SMTP) server. If that sounds like Greek to you, read the sidebar
entitled “Considering the SMTP server” that appears later in the chapter.

310 Part IV: Performing Advanced Tasks

Understanding What Happens
When You Send E-mail

E-mail has become so reliable and so mundane that most people don’t under-
stand what a miracle it is that it works at all. Actually, the same can be said of
the real mail service. When you think about it, the likelihood of one particular

Considering the simple mail transfer protocol
When you work with e­mail, you see a lot of
references to Simple Mail Transfer Protocol
(SMTP). Of course, the term looks really techni­
cal, and what happens under the covers truly
is technical, but all you really need to know is
that it works. On the other hand, understanding
SMTP a little more than as a “black box” that
takes an e­mail from the sender and spits it out
at the other end to the recipient can be useful.
Taking the term apart (in reverse order), you see
these elements:

 ✓ Protocol: A standard set of rules. E­mail
work by requiring rules that everyone
agrees upon. Otherwise, e­mail would
become unreliable.

 ✓ Mail transfer: Documents are sent from
one place to another, much the same as
what the post office does with real mail. In
e­mail’s case, the transfer process relies on
short commands that your e­mail applica­
tion issues to the SMTP server. For example,
the MAIL FROM command tells the SMTP
server who is sending the e­mail, while the
RCPT TO command states where to send it.

 ✓ Simple: States that this activity goes on
with the least amount of effort possible. The
fewer parts to anything, the more reliable it
becomes.

If you were to look at the rules for transferring
the information, you would find they’re anything
but simple. For example, RFC1123 is a standard
that specifies how Internet hosts are supposed
to work (see http://www.faqs.org/
rfcs/rfc1123.html for details). These
rules are used by more than one Internet
technology, which explains why most of them
appear to work about the same (even though
their resources and goals may be different).

Another, entirely different standard, RFC2821,
describes how SMTP specifically implements
the rules found in RFC1123 (see http://
www.faqs.org/rfcs/rfc2821.html
for details). The point is, a whole lot of rules
are written in jargon that only a true geek
could love (and even the geeks aren’t sure).
If you want a plain­English explanation of
how e­mail works, check out the article at
http://computer.howstuffworks.
com/e-mail-messaging/email.htm.
Page 4 of this article (http://computer.
howstuffworks.com/e-mail-
messaging/email3.htm) describes the
commands that SMTP uses to send informa­
tion hither and thither across the Internet. In
fact, if you want the shortest possible descrip­
tion of SMTP, page 4 is probably the right place
to look.

311 Chapter 16: Sending an E-Mail

letter leaving one location and ending up precisely where it should at the
other end seems impossible — mind-boggling, even. However, both e-mail
and its real-world equivalent have several aspects in common that improve
the likelihood that they’ll actually work as intended. The following sections
examine what happens when you write an e-mail, click Send, and the recipi-
ent receives it on the other end. You might be surprised at what you discover.

Viewing e-mail as you do a letter
The best way to view e-mail is the same as how you view a letter. When you
write a letter, you provide two pieces of paper as a minimum. The first con-
tains the content of the letter, the second is an envelope. Assuming that the
postal service is honest, the content is never examined by anyone other than
the recipient. The same can be said of e-mail. An e-mail actually consists of
these components:

 ✓ Message: The content of the e-mail, which is actually composed of two
subparts:

 •	Header: The part of the e-mail content that includes the subject,
the list of recipients, and other features, such as the urgency of the
e-mail.

 •	Body: The part of the e-mail content that contains the actual mes-
sage. The message can be in plain text, formatted as HTML, and
consisting of one or more documents, or it can be a combination of
all these elements.

 ✓ Envelope: A container for the message. The envelope provides sender
and recipient information, just as the envelope for a physical piece of
mail provides. However, an e-mail doesn’t include a stamp.

When working with e-mail, you create a message using an e-mail application.
As part of the e-mail application setup, you also define account information.
When you click send:

 1. The e-mail application wraps up your message, with the header first, in an
envelope that includes both your sender and the recipient’s information.

 2. The e-mail application uses the account information to contact the
SMTP server and send the message for you.

 3. The SMTP server reads only the information found in the message enve-
lope and redirects your e-mail to the recipient.

 4. The recipient e-mail application logs on to the local server, picks up the
e-mail, and then displays only the message part for the user.

312 Part IV: Performing Advanced Tasks

The process is a little more complex than this explanation, but this is essen-
tially what happens. In fact, it’s much the same as the process used when
working with physical letters in that the essential steps are the same. With
physical mail, the e-mail application is replaced by you on one end and the
recipient at the other. The SMTP server is replaced by the post office and the
employees who work there (including the postal carriers). However, someone
generates a message, the message is transferred to a recipient, and the recipi-
ent receives the message in both cases.

Defining the parts of the envelope
There is a difference in how the envelope for an e-mail is configured and how
it’s actually handled. When you view the envelope for an e-mail, it looks just
like a letter in that it contains the address of the sender and the address of
the recipient. It may not look physically like an envelope, but the same com-
ponents are there. When you visualize a physical envelope, you see certain
specifics, such as the sender’s name, street address, city, state, and zip code.
The same is true for the recipient. These elements define, in physical terms,
where the postal carrier should deliver the letter or return the letter when it
can’t be delivered.

However, when the SMTP server processes the envelope for an e-mail, it must
look at the specifics of the address, which is where the analogy of a physical
envelope used for mail starts to break down a little. An e-mail address con-
tains different information from a physical address. In summary, here is what
the e-mail address contains:

 ✓ Host: The host is akin to the city and state used by a physical mail enve-
lope. A host address is the address used by the card that is physically
connected to the Internet, and it handles all the traffic that the Internet
consumes or provides for this particular machine. A PC can use Internet
resources in a lot of ways, but the host address for all these uses is the
same.

 ✓ Port: The port is akin to the street address used by a physical mail
envelope. It specifies which specific part of the system should receive
the message. For example, an SMTP server used for outgoing messages
normally relies on port 25. However, the Point-of-Presence (POP3) server
used for incoming e-mail messages usually relies on port 110. Your
browser typically uses port 80 to communicate with websites. However,
secure websites (those that use https as a protocol, rather than http)
rely on port 443 instead. You can see a list of typical ports at http://
en.wikipedia.org/wiki/List_of_TCP_and_UDP_port_numbers.

313 Chapter 16: Sending an E-Mail

 ✓ Local hostname: The local hostname is the human-readable form of
the combination of the host and port. For example, the website www.
myplace.com might resolve to an address of 55.225.163.40:80 (where
the first four numbers are the host address and the number after the
colon is the port). Python takes care of these details behind the scenes
for you, so normally you don’t need to worry about them. However, it’s
nice to know that this information is available.

Now that you have a better idea of how the address is put together, it’s time
to look at it more carefully. The following sections describe the envelope of
an e-mail in more precise terms.

Host
A host address is the identifier for a connection to a server. Just as an address
on an envelope isn’t the actual location, neither is the host address the actual
server. It merely specifies the location of the server.

 The connection used to access a combination of a host address and a port is
called a socket. Just who came up with this odd name and why isn’t important.
What is important is that you can use the socket to find out all kinds of informa-
tion that’s useful in understanding how e-mail works. The following steps help
you see hostnames and host addresses at work. More important, you begin to
understand the whole idea of an e-mail envelope and the addresses it contains.

 1. Open a Python Shell window.

 You see the familiar Python prompt.

 2. Type import socket and press Enter.

 Before you can work with sockets, you must import the socket library.
This library contains all sorts of confusing attributes, so use it with cau-
tion. However, this library also contains some interesting functions that
help you see how the Internet addresses work.

 3. Type socket.gethostbyname(“localhost”) and press Enter.

 You see a host address as output. In this case, you should see 127.0.0.1
as output because localhost is a standard hostname. The address,
127.0.0.1, is associated with the host name, localhost.

 4. Type socket.gethostbyaddr(“127.0.0.1”) and press Enter.

 Be prepared for a surprise. You get a tuple as output, as shown in
Figure 16-1. However, instead of getting localhost as the name of the
host, you get the name of your machine. You use localhost as a common
name for the local machine, but when you specify the address, you get
the machine name instead. In this case, Main is the name of my personal
machine. The name you see on your screen will correspond to your
machine.

314 Part IV: Performing Advanced Tasks

Figure 16-1:
The local­

host
address

actually cor­
responds

to your
machine.

 5. Type socket.gethostbyname(“www.johnmuellerbooks.com”) and press
Enter.

 You see the output shown in Figure 16-2. This is the address for my web-
site. The point is that these addresses work wherever you are and what-
ever you’re doing — just like those you place on a physical envelope.
The physical mail uses addresses that are unique across the world, just
as the Internet does.

Figure 16-2:
The

addresses
that you

use to send
e­mail are

unique
across the

Internet.

 6. Close the Python shell.

Port
A port is a specific entryway for a server location. The host address specifies
the location, but the port defines where to get in. Even if you don’t specify a
port every time you use a host address, the port is implied. Access is always

315 Chapter 16: Sending an E-Mail

granted using a combination of the host address and the port. The following
steps help illustrate how ports work with the host address to provide server
access:

 1. Open a Python Shell window.

 You see the familiar Python prompt.

 2. Type import socket and press Enter.

 Remember that a socket provides both host address and port informa-
tion. You use the socket to create a connection that includes both items.

 3. Type socket.getaddrinfo(“localhost”, 110) and press Enter.

 The first value is the name of a host you want to obtain information
about. The second value is the port on that host. In this case, you obtain
the information about localhost port 110.

 You see the output shown in Figure 16-3. The output consists of two
tuples: one for the Internet Protocol version 6 (IPv6) output and one
for the Internet Protocol version 4 (IPv4) address. Each of these tuples
contains five entries, four of which you really don’t need to worry
about because you’ll likely never need them. However, the last entry,
('127.0.0.1', 110), shows the address and port for localhost
port 110.

Figure 16-3:
The local­
host host
provides

both an IPv6
and an IPv4

address.

 4. Type socket.getaddrinfo(“johnmuellerbooks.com”, 80) and press Enter.

 Figure 16-4 shows the output from this command. Notice that this
Internet location provides only an IPv4 address, not an IPv6, address,
for port 80. The socket.getaddrinfo() method provides a useful
method for determining how you can access a particular location.
Using IPv6 provides significant benefits over IPv4 (see http://www.
networkcomputing.com/networking/six-benefits-of-ipv6/
d/d-id/1232791 for details), but most Internet locations provide only
IPv4 support now.

316 Part IV: Performing Advanced Tasks

Figure 16-4:
Most

Internet
locations

provide
only an IPv4

address.

 5. Type socket.getservbyport(25) and press Enter.

 You see the output shown in Figure 16-5. The socket.getservbyport()
method provides the means to determine how a particular port is used.
Port 25 is always dedicated to SMTP support on any server. So, when you
access 127.0.0.1:25, you’re asking for the SMTP server on localhost. In
short, a port provides a specific kind of access in many situations.

Figure 16-5:
Standardized
ports provide

specific
services on

every server.

 6. Close the Python shell.

 Some people assume that the port information is always provided. However,
this isn’t always the case. Python will provide a default port when you don’t
supply one, but relying on the default port is a bad idea because you can’t be
certain which service will be accessed. In addition, some systems use nonstan-
dard port assignments as a security feature. Always get into the habit of using
the port number and ensuring that you have the right one for the task at hand.

317 Chapter 16: Sending an E-Mail

Local hostname
A hostname is simply the human-readable form of the host address. Humans
don’t really understand 127.0.0.1 very well (and the IPv6 addresses make
even less sense). However, humans do understand localhost just fine. There
is a special server and setup to translate human-readable hostnames to host
addresses, but you really don’t need to worry about it for this book (or pro-
gramming in general). When your application suddenly breaks for no appar-
ent reason, it helps to know that one does exist, though.

The “Host” section, earlier in this chapter, introduces you to the hostname to
a certain extent through the use of the socket.gethostbyaddr() method,
whereby an address is translated into a hostname. You saw the process in
reverse using the socket.gethostbyname() method. The following steps
help you understand some nuances about working with the hostname:

 1. Open a Python Shell window.

 You see the familiar Python prompt.

 2. Type import socket and press Enter.

 3. Type socket.gethostname() and press Enter.

 You see the name of the local system, as shown in Figure 16-6. The name
of your system will likely vary from mine, so your output will be different
than that shown in Figure 16-6, but the idea is the same no matter which
system you use.

Figure 16-6:
Sometimes

you need
to know

the name
of the local

system.

 4. Type socket.gethostbyname(socket.gethostname()) and press Enter.

 You see the IP address of the local system, as shown in Figure 16-7.
Again, your setup is likely different from mine, so the output you see will
differ. This is a method you can use in your applications to determine
the address of the sender when needed. Because it doesn’t rely on any
hard-coded value, the method works on any system.

 5. Close the Python shell.

318 Part IV: Performing Advanced Tasks

Figure 16-7:
Avoid using
hard­coded

values for
the local

system
whenever

possible.

Defining the parts of the letter
The “envelope” for an e-mail address is what the SMTP server uses to route the
e-mail. However, the envelope doesn’t include any content — that’s the pur-
pose of the letter. A lot of developers get the two elements confused because
the letter contains sender and receiver information as well. This information
appears in the letter just like the address information that appears in a busi-
ness letter — it’s for the benefit of the viewer. When you send a business letter,
the postal delivery person doesn’t open the envelope to see the address infor-
mation inside. Only the information on the envelope matters.

 It’s because the information in the e-mail letter is separate from its informa-
tion in the envelope that nefarious individuals can spoof e-mail addresses. The
envelope potentially contains legitimate sender information, but the letter may
not. (When you see the e-mail in your e-mail application, all that is present is
the letter, not the envelope — the envelope has been stripped away by the
e-mail application.) For that matter, neither the sender nor the recipient infor-
mation may be correct in the letter that you see onscreen in your e-mail reader.

The letter part of an e-mail is actually made of separate components, just as
the envelope is. Here is a summary of the three components:

 ✓ Sender: The sender information tells you who sent the message. It con-
tains just the e-mail address of the sender.

 ✓ Receiver: The receiver information tells you who will receive the mes-
sage. This is actually a list of recipient e-mail addresses. Even if you
want to send the message to only one person, you must supply the
single e-mail address in a list.

319 Chapter 16: Sending an E-Mail

 ✓ Message: Contains the information that you want the recipient to see.
This information can include the following:

 •	From: The human-readable form of the sender.

 •	To: The human-readable form of the recipients.

 •	CC: Visible recipients who also received the message, even though
they aren’t the primary targets of the message.

 •	Subject: The purpose of the message.

 •	Documents: One or more documents, including the text message
that appears with the e-mail.

E-mails can actually become quite complex and lengthy. Depending on the
kind of e-mail that is sent, a message could include all sorts of additional
information. However, most e-mails contain these simple components, and
this is all the information you need to send an e-mail from your application.
The following sections describe the process used to generate a letter and its
components in more detail.

Defining the message
Sending an empty envelope to someone will work, but it isn’t very exciting. In
order to make your e-mail message worthwhile, you need to define a message.
Python supports a number of methods of creating messages. However, the
easiest and most reliable way to create a message is to use the Multipurpose
Internet Mail Extensions (MIME) functionality that Python provides (and no, a
MIME is not a silent person with white gloves who acts out in public).

As with many e-mail features, MIME is standardized, so it works the same
no matter which platform you use. There are also numerous forms of MIME
that are all part of the email.mime module described at https://docs.
python.org/3/library/email.mime.html. Here are the forms that you
need to consider most often when working with e-mail:

 ✓ MIMEApplication: Provides a method for sending and receiving applica-
tion input and output

 ✓ MIMEAudio: Contains an audio file

 ✓ MIMEImage: Contains an image file

 ✓ MIMEMultipart: Allows a single message to contain multiple subparts,
such as including both text and graphics in a single message

 ✓ MIMEText: Contains text data that can be in ASCII, HTML, or another
standardized format

320 Part IV: Performing Advanced Tasks

Although you can create any sort of an e-mail message with Python, the easi-
est type to create is one that contains plain text. The lack of formatting in the
content lets you focus on the technique used to create the message, rather
than on the message content. The following steps help you understand how
the message-creating process works, but you won’t actually send the mes-
sage anywhere.

 1. Open a Python Shell window.

 You see the familiar Python prompt.

 2. Type the following code (pressing Enter after each line):

from email.mime.text import MIMEText
msg = MIMEText("Hello There")
msg['Subject'] = "A Test Message"
msg['From']='John Mueller <John@JohnMuellerBooks.com>'
msg['To'] = 'John Mueller <John@JohnMuellerBooks.com>'

 This is a basic plain-text message. Before you can do anything, you must
import the required class, which is MIMEText. If you were creating some
other sort of message, you’d need to import other classes or import the
email.mime module as a whole.

 The MIMEText() constructor requires message text as input. This is the
body of your message, so it might be quite long. In this case, the mes-
sage is relatively short — just a greeting.

 At this point, you assign values to standard attributes. The example
shows the three common attributes that you always define: Subject,
From, and To. The two address fields, From and To, contain both a
human-readable name and the e-mail address. All you have to include is
the e-mail address.

 3. Type msg.as_string() and press Enter.

 You see the output shown in Figure 16-8. This is how the message actu-
ally looks. If you have ever looked under the covers at the messages pro-
duced by your e-mail application, the text probably looks familiar.

 The Content-Type reflects the kind of message you created, which
is a plain-text message. The charset tells what kind of characters are
used in the message so that the recipient knows how to handle them.
The MIME-Version specifies the version of MIME used to create the
message so that the recipient knows whether it can handle the content.
Finally, the Context-Transfer-Encoding determines how the mes-
sage is converted into a bit stream before it is sent to the recipient.

321 Chapter 16: Sending an E-Mail

Figure 16-8:
Python

adds some
additional

information
required to
make your

message
work.

Specifying the transmission
An earlier section (“Defining the parts of the envelope”) describes how the
envelope is used to transfer the message from one location to another. The
process of sending the message entails defining a transmission method.
Python actually creates the envelope for you and performs the transmission,
but you must still define the particulars of the transmission. The following
steps help you understand the simplest approach to transmitting a message
using Python. These steps won’t result in a successful transmission unless
you modify them to match your setup. Read the “Considering the SMTP
server” sidebar for additional information.

 1. Use the Python Shell window that you opened if you followed the
steps in the “Defining the message” section.

 You should see the message that you created earlier.

 2. Type the following code (pressing Enter after each line and pressing
Enter twice after the last line):

import smtplib
s = smtplib.SMTP('localhost')

 The smtplib module contains everything needed to create the message
envelope and send it. The first step in this process is to create a connec-
tion to the SMTP server, which you name as a string in the constructor. If
the SMTP server that you provide doesn’t exist, the application will fail
at this point, saying that the host actively refused the connection.

322 Part IV: Performing Advanced Tasks

 3. Type s.sendmail(‘SenderAddress’, [‘RecipientAddress’], msg.as_string())
and press Enter.

 In order for this step to work, you must replace SenderAddress and
RecipientAddress with real addresses. Don’t include the human-
readable form this time — the server requires only an address.

 This is the step that actually creates the envelope, packages the e-mail
message, and sends it off to the recipient. Notice that you specify the
sender and recipient information separately from the message, which
the SMTP server doesn’t read.

 4. Close the Python shell.

Considering the message subtypes
The “Defining the message” section, earlier in this chapter, describes the
major e-mail message types, such as application and text. However, if e-mail
had to rely on just those types, transmitting coherent messages to anyone
would be difficult. The problem is that the type of information isn’t explicit
enough. If you send someone a text message, you need to know what sort of
text it is before you can process it, and guessing just isn’t a good idea. A text
message could be formatted as plain text, or it might actually be an HTML
page. You wouldn’t know from just seeing the type, so messages require a
subtype. The type is text and the subtype is html when you send an HTML
page to someone. The type and subtype are separated by a forward slash, so
you’d see text/html if you looked at the message.

 Theoretically, the number of subtypes is unlimited as long as the platform has
a handler defined for that subtype. However, the reality is that everyone needs
to agree on the subtypes or there won’t be a handler (unless you’re talking
about a custom application for which the two parties have agreed to a custom
subtype in advance). With this in mind, you can find a listing of standard types
and subtypes at http://www.freeformatter.com/mime-types-list.
html. The nice thing about the table on this site is that it provides you with a
common file extension associated with the subtype and a reference to obtain
additional information about it.

Creating the E-mail Message
So far, you’ve seen how both the envelope and the message work. Now it’s
time to put them together and see how they actually work. The following sec-
tions show how to create two messages. The first message is a plain-text mes-
sage and the second message uses HTML formatting. Both messages should
work fine with most e-mail readers — nothing fancy is involved.

323 Chapter 16: Sending an E-Mail

Working with a text message
Text messages represent the most efficient and least resource-intensive
method of sending communication. However, text messages also convey
the least amount of information. Yes, you can use emoticons to help get the
point across, but the lack of formatting can become a problem in some situa-
tions. The following steps describe how to create a simple text message using
Python. This example also appears with the downloadable source code as
TextMessage.py.

 1. Open a Python File window.

 You see an editor in which you can type the example code.

 2. Type the following code into the window — pressing Enter after each
line:

from email.mime.text import MIMEText
import smtplib

msg = MIMEText("Hello There!")

msg['Subject'] = 'A Test Message'
msg['From']='SenderAddress'
msg['To'] = 'RecipientAddress'

s = smtplib.SMTP('localhost')
s.sendmail('SenderAddress',
 ['RecipientAddress'],
 msg.as_string())

print("Message Sent!")

 This example is a combination of everything you’ve seen so far in the
chapter. However, this is the first time you’ve seen everything put
together. Notice that you create the message first, and then the envelope
(just as you would in real life).

 3. Choose Run➪Run Module.

 The application tells you that it has sent the message to the recipient.

324 Part IV: Performing Advanced Tasks

Working with an HTML message
An HTML message is basically a text message with special formatting. The
following steps help you create an HTML e-mail to send off. This example also
appears with the downloadable source code as HTMLMessage.py.

 1. Open a Python File window.

 You see an editor in which you can type the example code.

 2. Type the following code into the window — pressing Enter after each
line:

from email.mime.text import MIMEText
import smtplib

msg = MIMEText(
 "<h1>A Heading</h1><p>Hello There!</p>","html")

Considering the SMTP server
If you tried the example in this chapter with­
out modifying it, you’re probably scratching
your head right now trying to figure out what
went wrong. It’s unlikely that your system has
an SMTP server connected to localhost. The
reason for the examples to use localhost is to
provide a placeholder that you replace later
with the information for your particular setup.

In order to see the example actually work, you
need an SMTP server as well as a real­world
e­mail account. Of course, you could install
all the software required to create such an
environment on your own system, and some
developers who work extensively with e­mail
applications do just that. Most platforms come
with an e­mail package that you can install,
or you can use a freely available substitute
such as Sendmail, an open source product
available for download at https://www.
sendmail.com/sm/open_source/

download/. The easiest way to see the
example work is to use the same SMTP server
that your e­mail application uses. When you
set up your e­mail application, you either asked
the e­mail application to detect the SMTP
server or you supplied the SMTP server on
your own. The configuration settings for your
e­mail application should contain the required
information. The exact location of this infor­
mation varies widely by e­mail application, so
you need to look at the documentation for your
particular product.

No matter what sort of SMTP server you even­
tually find, you need to have an account on that
server in most cases to use the functionality it
provides. Replace the information in the exam­
ples with the information for your SMTP server,
such as smtp.myisp.com, along with your
e­mail address for both sender and receiver.
Otherwise, the example won’t work.

325 Chapter 16: Sending an E-Mail

msg['Subject'] = 'A Test HTML Message'
msg['From']='SenderAddress'
msg['To'] = 'RecipientAddress'

s = smtplib.SMTP('localhost')
s.sendmail('SenderAddress',
 ['RecipientAddress'],
 msg.as_string())

print("Message Sent!")

 The example follows the same flow as the text message example in the
previous section. However, notice that the message now contains HTML
tags. You create an HTML body, not an entire page. This message will
have an H1 header and a paragraph.

 The most important part of this example is the text that comes after the
message. The "html" argument changes the subtype from text/plain
to text/html, so the recipient knows to treat the message as HTML
content. If you don’t make this change, the recipient won’t see the HTML
output.

 3. Choose Run➪Run Module.

 The application tells you that it has sent the message to the recipient.

Seeing the E-mail Output
At this point, you have between one and three application-generated mes-
sages (depending on how you’ve gone through the chapter) waiting in your
Inbox. To see the messages you created in earlier sections, your e-mail appli-
cation must receive the messages from the server — just as it would with
any e-mail. Figure 16-9 shows an example of the HTML version of the message
when viewed in Output. (Your message will likely look different depending on
your platform and e-mail application.)

If your e-mail application offers the capability to look at the message source,
you find that the message actually does contain the information you saw
earlier in the chapter. Nothing is changed or different about it because after it
leaves the application, the message isn’t changed in any way during its trip.

326 Part IV: Performing Advanced Tasks

Figure 16-9:
The HTML

output
contains a

header and
a paragraph
as expected.

 The point of creating your own application to send and receive e-mail isn’t
convenience — using an off-the-shelf application serves that purpose much
better. The point is flexibility. As you can see from this short chapter on the
subject, you control every aspect of the message when you create your own
application. Python hides much of the detail from view, so what you really
need to worry about are the essentials of creating and transmitting the mes-
sage using the correct arguments.

Part V
The Part of Tens

 Enjoy an additional Part of Tens article about ten sites with unique designs at
www.dummies.com/extras/beginningprogrammingwithpython.

In this part
 ✓ Discover really cool resources that you can use to make your

Python programming experience better.

 ✓ Earn a living with the Python knowledge you gain.

 ✓ Get the tools you need to work more efficiently with
Python.

 ✓ Make Python do even more by adding libraries.

Chapter 17

Ten Amazing Programming
Resources

In This Chapter
▶ Using the Python documentation

▶ Accessing an interactive Python tutorial

▶ Creating online applications using Python

▶ Extending Python using third-party libraries

▶ Obtaining a better editor than Python’s for Python application development

▶ Getting the syntax for your Python application correct

▶ Working with XML

▶ Becoming a professional coder with less effort than usual

▶ Overcoming the Unicode obstacle

▶ Creating applications that run fast

T
his book is a great start to your Python programming experience, but
you’ll want additional resources at some point. This chapter provides

you with ten amazing programming resources that you can use to make your
development experience better. By using these resources, you save both time
and energy in creating your next dazzling Python application.

 Of course, this chapter is only the beginning of your Python resource experi-
ence. Literally reams of Python documentation are out there, along with moun-
tains of Python code. It might be possible to write an entire book (or two) on
just the Python libraries. This chapter is designed to provide you with ideas of
where to look for additional information that’s targeted toward meeting your
specific needs. Don’t let this be the end of your search — consider this chapter
the start of your search instead.

330 Part V: The Part of Tens

Working with the Python
Documentation Online

An essential part of working with Python is knowing what is available in
the base language and how to extend it to perform other tasks. The Python
documentation at https://docs.python.org/3/ (created for the 3.4.1
version of the product at the time of this writing; it may be updated by the
time you read this chapter) contains a lot more than just the reference to the
language that you receive as part of a download. In fact, you see these topics
discussed as part of the documentation:

 ✓ New features in the current version of the language

 ✓ Access to a full-fledged tutorial

 ✓ Complete library reference

 ✓ Complete language reference

 ✓ How to install and configure Python

 ✓ How to perform specific tasks in Python

 ✓ Help with installing Python modules from other sources (as a means of
extending Python)

 ✓ Help with distributing Python modules you create so that others can use
them

 ✓ How to extend Python using C/C++ and then embed the new features you
create

 ✓ Complete reference for C/C++ developers who want to extend their
applications using Python

 ✓ Frequently Asked Questions (FAQ) pages

 All this information is provided in a form that is easy to access and use. In
addition to the usual table-of-contents approach to finding information, you
have access to a number of indexes. For example, if you aren’t interested in
anything but locating a particular module, class, or method, you can use the
Global Module Index.

The https://docs.python.org/3/ web page is also the place where you
report problems with Python. It’s important to work through problems you’re
having with the product, but as with any other language, Python does have
bugs in it. Locating and destroying the bugs will only make Python a better
language.

331 Chapter 17: Ten Amazing Programming Resources

Using the LearnPython.org
Tutorial

Many tutorials are available for Python and many of them do a great job, but
they’re all lacking a special feature that you find when using the LearnPython.
org tutorial at http://www.learnpython.org/ — interactivity. Instead of
just reading about a Python feature, you read it and then try it yourself using
the interactive feature of the site.

You have already worked through all the material in the simple tutorials in
this book. However, you haven’t worked through the advanced tutorials yet.
These tutorials present the following topics:

 ✓ Generators: Specialized functions that return iterators.

 ✓ List comprehensions: A method to generate new lists based on existing
lists.

 ✓ Multiple function arguments: An extension of the methods described in
the “Using methods with variable argument lists” in Chapter 14.

 ✓ Regular expressions: Wildcard setups used to match patterns of charac-
ters, such as telephone numbers.

 ✓ Exception handling: An extension of the methods described in
Chapter 9.

 ✓ Sets: Demonstrates a special kind of list that never contains duplicate
entries.

 ✓ Serialization: Shows how to use a data storage methodology called
JavaScript Object Notation (JSON).

 ✓ Partial functions: A technique for creating specialized versions of
simple functions that derive from more complex functions. For example,
if you have a multiply() function that requires two arguments, a par-
tial function named double() might require only one argument that it
always multiplies by 2.

 ✓ Code introspection: Provides the ability to examine classes, functions,
and keywords to determine their purpose and capabilities.

 ✓ Decorator: A method for making simple modifications to callable
objects.

332 Part V: The Part of Tens

Performing Web Programming
Using Python

This book discusses the ins and outs of basic programming, so it relies on
desktop applications because of their simplicity. However, many developers
specialize in creating online applications of various sorts using Python. The
Web Programming in Python site at https://wiki.python.org/moin/
WebProgramming helps you make the move from the desktop to online appli-
cation development. It doesn’t just cover one sort of online application — it
covers almost all of them (an entire book free for the asking). The tutorials are
divided into these three major (and many minor) areas:

 ✓ Server

 •	Developing server-side frameworks for applications

 •	Creating a Common Gateway Interface (CGI) script

 •	Providing server applications

 •	Developing Content Management Systems (CMS)

 •	Designing data access methods through web services solutions

 ✓ Client

 •	Interacting with browsers and browser-based technologies

 •	Creating browser-based clients

 •	Accessing data through various methodologies, including web
services

 ✓ Related

 •	Creating common solutions for Python-based online computing

 •	Interacting with DataBase Management Systems (DBMSs)

 •	Designing application templates

 •	Building Intranet solutions

Getting Additional Libraries
The Pythonware site (http://www.pythonware.com/) doesn’t look all
that interesting until you start clicking the links. It provides you with access
to a number of third-party libraries that help you perform additional tasks

333 Chapter 17: Ten Amazing Programming Resources

using Python. Although all the links provide you with useful resources, the
“Downloads (downloads.effbot.org)” link is the one you should look at
first. This download site provides you with access to

 ✓ aggdraw: A library that helps you create anti-aliased drawings.

 ✓ celementtree: An add-on to the elementtree library that makes working
with XML data more efficient and faster.

 ✓ console: An interface for Windows that makes it possible to create
better console applications.

 ✓ effbot: A collection of useful add-ons and utilities, including the EffNews
RSS news reader.

 ✓ elementsoap: A library that helps you create Simple Object Access
Protocol (SOAP) connections to Web services providers.

 ✓ elementtidy: An add-on to the elementtree library that helps you create
nicer-looking and more functional XML tree displays than the standard
ones in Python.

 ✓ elementtree: A library that helps you interact with XML data more effi-
ciently than standard Python allows.

 ✓ exemaker: A utility that creates an executable program from your
Python script so that you can execute the script just as you would any
other application on your machine.

 ✓ ftpparse: A library for working with FTP sites.

 ✓ grabscreen: A library for performing screen captures.

 ✓ imaging: Provides the source distribution to the Python Imaging Library
(PIL) that lets you add image-processing capabilities to the Python inter-
preter. Having the source lets you customize PIL to meet specific needs.

 ✓ pil: Binary installers for PIL, which make obtaining a good installation
for your system easier. (There are other PIL-based libraries as well, such
as pilfont — a library for adding enhanced font functionality to a PIL-
based application.)

 ✓ pythondoc: A utility for creating documentation from the comments in
your Python code that works much like JavaDoc.

 ✓ squeeze: A utility for converting your Python application contained
in multiple files into a one- or two-file distribution that will execute as
normal with the Python interpreter.

 ✓ tkinter3000: A widget-building library for Python that includes a number
of subproducts. Widgets are essentially bits of code that create controls,
such as buttons, to use in GUI applications. There are a number of add-
ons for the tkinter3000 library, such as wckgraph, which helps you add
graphing support to an application.

334 Part V: The Part of Tens

Creating Applications
Faster Using an IDE

An Interactive Development Environment (IDE) helps you create applications
in a specific language. The Integrated DeveLopment Environment (IDLE)
editor that comes with Python worked well for the needs of the book, but
you may find it limited after a while. For example, IDLE doesn’t provide the
advanced debugging functionality that many developers favor. In addition,
you may find that you want to create graphical applications, which is difficult
using IDLE.

You can talk to 50 developers and get little consensus as to the best tool for
any job, especially when discussing IDEs. Every developer has a favorite
product and isn’t easily swayed to try another. Developers invest many hours
learning a particular IDE and extending it to meet specific requirements
(when the IDE allows such tampering).

 An inability (at times) to change IDEs later is why it’s important to try a
number of different IDEs before you settle on one. (The most common reason
for not wanting to change an IDE after you select one is that the project types
are incompatible, which would mean having to re-create your projects every
time you change editors, but there are many other reasons that you can find
listed online.) The PythonEditors wiki at https://wiki.python.org/
moin/PythonEditors provides an extensive list of IDEs that you can try.
The table provides you with particulars about each editor so that you can
eliminate some of the choices immediately.

Checking Your Syntax
with Greater Ease

The IDLE editor provides some level of syntax highlighting, which is helpful
in finding errors. For example, if you mistype a keyword, it doesn’t change
color to the color used for keywords on your system. Seeing that it hasn’t
changed makes it possible for you to know to correct the error immediately,
instead of having to run the application and find out later that something has
gone wrong (sometimes after hours of debugging).

335 Chapter 17: Ten Amazing Programming Resources

The python.vim utility (http://www.vim.org/scripts/script.
php?script_id=790) provides enhanced syntax highlighting that makes
finding errors in your Python script even easier. This utility runs as a script,
which makes it fast and efficient to use on any platform. In addition, you can
tweak the source code as needed to meet particular needs.

Using XML to Your Advantage
The eXtensible Markup Language (XML) is used for data storage of all types
in most applications of any substance today. You probably have a number of
XML files on your system and don’t even know it because XML data appears
under a number of file extensions. For example, many .config files, used to
hold application settings, rely on XML. In short, it’s not a matter of if you’ll
encounter XML when writing Python applications, but when.

XML has a number of advantages over other means of storing data. For exam-
ple, it’s platform independent. You can use XML on any system, and the same
file is readable on any other system as long as that system knows the file
format. The platform independence of XML is why it appears with so many
other technologies, such as web services. In addition, XML is relatively easy
to learn and because it’s text, you can usually fix problems with it without too
many problems.

 It’s important to learn about XML itself, and you can do so using an easy
tutorial such as the one found on the W3Schools site at http://www.
w3schools.com/xml/default.ASP. Some developers rush ahead and later
find that they can’t understand the Python-specific materials that assume they
already know how to write basic XML files. The W3Schools site is nice because
it breaks up the learning process into chapters so that you can work with XML
a little at a time, as follows:

 ✓ Taking a basic XML tutorial

 ✓ Validating your XML files

 ✓ Using XML with JavaScript (which may not seem important, but
JavaScript is prominent in many online application scenarios)

 ✓ Gaining an overview of XML-related technologies

 ✓ Using advanced XML techniques

 ✓ Working with XML examples that make seeing XML in action easier

336 Part V: The Part of Tens

After you get the fundamentals down, you need a resource that shows how
to use XML with Python. One of the better places to find this information is
the Python and XML Processing site at http://pyxml.sourceforge.net/
topics/. Between these two resources, you can quickly build a knowledge of
XML that will have you building Python applications that use XML in no time.

Getting Past the Common
Python Newbie Errors

Absolutely everyone makes coding mistakes — even that snobby fellow
down the hall who has been programming for the last 30 years (he started in
kindergarten). No one likes to make mistakes and some people don’t like to
own up to them, but everyone does make them. So you shouldn’t feel too bad
when you make a mistake. Simply fix it up and get on with your life.

 Of course, there is a difference between making a mistake and making an
avoidable, common mistake. Yes, even the professionals sometimes make the
common mistakes, but it’s far less likely because they have seen the mistake
in the past and have trained themselves to avoid it. You can gain an advantage
over your competition by avoiding the newbie mistakes that everyone has to
learn about sometime. To avoid these mistakes, check out this two-part series:

Using W3Schools to your advantage
One of the most used online resources for
learning online computing technologies is
W3Schools. You can find the main page at
http://www.w3schools.com/. This
single resource can help you discover every
web technology needed to build any sort of
modern application you can imagine. The topics
include:

 ✓ HTML

 ✓ CSS

 ✓ JavaScript

 ✓ SQL

 ✓ JQuery

 ✓ PHP

 ✓ XML

 ✓ ASP.NET

However, you should realize that this is just a
starting point for Python developers. Use the
W3Schools material to get a good handle on
the underlying technology, and then rely on
Python­specific resources to build your skills.
Most Python developers need a combination of
learning materials to build the skills required to
make a real difference in application coding.

337 Chapter 17: Ten Amazing Programming Resources

 ✓ Python: Common Newbie Mistakes, Part 1 (http://blog.amir.
rachum.com/blog/2013/07/06/python-common-newbie-
mistakes-part-1/)

 ✓ Python: Common Newbie Mistakes, Part 2 (http://blog.amir.
rachum.com/blog/2013/07/09/python-common-newbie-
mistakes-part-2/)

Many other resources are available for people who are just starting with
Python, but these particular resources are succinct and easy to understand.
You can read them in a relatively short time, make some notes about them
for later use, and avoid those embarrassing errors that everyone tends to
remember.

Understanding Unicode
Although this book tries to sidestep the thorny topic of Unicode, you’ll even-
tually encounter it when you start writing serious applications. Unfortunately,
Unicode is one of those topics that had a committee deciding what Unicode
would look like, so we ended up with more than one poorly explained defini-
tion of Unicode and a multitude of standards to define it. In short, there is no
one definition for Unicode.

You’ll encounter a wealth of Unicode standards when you start working with
more advanced Python applications, especially when you start working with
multiple human languages (each of which seems to favor its own flavor of
Unicode). Keeping in mind the need to discover just what Unicode is, here
are some resources you should check out:

 ✓ The Absolute Minimum Every Software Developer Absolutely, Positively
Must Know About Unicode and Character Sets (No Excuses!) (http://
www.joelonsoftware.com/articles/Unicode.html)

 ✓ The Updated Guide to Unicode on Python (http://lucumr.pocoo.
org/2013/7/2/the-updated-guide-to-unicode/)

 ✓ Python Encodings and Unicode (http://eric.themoritzfamily.
com/python-encodings-and-unicode.html)

 ✓ Unicode Tutorials and Overviews (http://www.unicode.org/
standard/tutorial-info.html)

 ✓ Explain it like I’m five: Python and Unicode? (http://
www.reddit.com/r/Python/comments/1g62eh/
explain_it_like_im_five_python_and_unicode/)

 ✓ Unicode Pain (http://nedbatchelder.com/text/unipain.html)

338 Part V: The Part of Tens

Making Your Python
Application Fast

Nothing turns off a user faster than an application that performs poorly.
When an application performs poorly, you can count on users not using it at
all. In fact, poor performance is a significant source of application failure in
enterprise environments. An organization can spend a ton of money to build
an impressive application that does everything, but no one uses it because it
runs too slowly or has other serious performance problems.

 Performance is actually a mix of reliability, security, and speed. In fact,
you can read about the performance triangle on my blog at http://
blog.johnmuellerbooks.com/2012/04/16/considering-the-
performance-triangle/. Many developers focus on just the speed part
of performance but end up not achieving their goal. It’s important to look at
every aspect of your application’s use of resources and to ensure that you use
the best coding techniques.

Numerous resources are available to help you understand performance
as it applies to Python applications. However, one of the best resources
out there is “A guide to analyzing Python performance,” at http://www.
huyng.com/posts/python-performance-analysis/. The author takes
the time to explain why something is a performance bottleneck, rather than
simply tell you that it is. After you read this article, make sure to check out
the PythonSpeed Performance Tips at https://wiki.python.org/moin/
PythonSpeed/PerformanceTips as well.

Chapter 18

Ten Ways to Make a Living
with Py thon

In This Chapter
▶ Using Python for QA

▶ Creating your own way in a smaller organization

▶ Employing Python for special product-scripting needs

▶ Working as an administrator

▶ Demonstrating programming techniques

▶ Delving into location data

▶ Mining data of various sorts

▶ Working with embedded systems

▶ Processing scientific data

▶ Analyzing data in real time

Y
ou can literally write any application you want using any language you
desire given enough time, patience, and effort. However, some under-

takings would be so convoluted and time consuming as to make the effort
a study in frustration. In short, most (possibly all) things are possible, but
not everything is worth the effort. Using the right tool for the job is always
a plus in a world that views time as something in short supply and not to be
squandered.

340 Part V: The Part of Tens

Python excels at certain kinds of tasks, which means that it also lends itself
to certain types of programming. The kind of programming you can perform
determines the job you get and the way in which you make your living. For
example, Python probably isn’t a very good choice for writing device driv-
ers, as C/C++ are, so you probably won’t find yourself working for a hardware
company. Likewise, Python can work with databases, but not at the same
depth that comes natively to other languages such as Structured Query
Language (SQL), so you won’t find yourself working on a huge corporate data-
base project. However, you may find yourself using Python in academic set-
tings because Python does make a great learning language. (See my blog post
on the topic at http://blog.johnmuellerbooks.com/2014/07/14/
python-as-a-learning-tool/.)

The following sections describe some of the occupations that do use Python
regularly so that you know what sorts of things you might do with your
new-found knowledge. Of course, a single source can’t list every kind of job.
Consider this an overview of some of the more common uses for Python.

Working in QA
A lot of organizations have separate Quality Assurance (QA) departments
that check applications to ensure that they work as advertised. Many differ-
ent test script languages are on the market, but Python makes an excellent
language in this regard because it’s so incredibly flexible. In addition, you can
use this single language in multiple environments — both on the client and
on the server. The broad reach of Python means that you can learn a single
language and use it for testing anywhere you need to test something, and in
any environment.

 In this scenario, the developer usually knows another language, such as C++,
and uses Python to test the applications written in C++. However, the QA
person doesn’t need to know another language in all cases. In some situations,
blind testing may be used to confirm that an application behaves in a practical
manner or as a means for checking the functionality of an external service pro-
vider. You need to check with the organization you want to work with as to the
qualifications required for a job from a language perspective.

341 Chapter 18: Ten Ways to Make a Living with Python

Becoming the IT Staff for
a Smaller Organization

A smaller organization may have only one or two IT staff, which means that
you have to perform a broad range of tasks quickly and efficiently. With
Python, you can write utilities and in-house applications quite swiftly. Even
though Python might not answer the needs of a large organization because
it’s interpreted (and potentially open to theft or fiddling by unskilled employ-
ees), using it in a smaller organization makes sense because you have greater
access control and need to make changes fast. In addition, the ability to use
Python in a significant number of environments reduces the need to use any-
thing but Python to meet your needs.

Why you need to know multiple
programming languages

Most organizations see knowledge of multiple
programming languages as a big plus (some
see it as a requirement). Of course, when you’re
an employer, it’s nice to get the best deal you
can when hiring a new employee. Knowing a
broader range of languages means that you
can work in more positions and offer greater
value to an organization. Rewriting applica­
tions in another language is time consuming,
error prone, and expensive, so most companies
look for people who can support an application
in the existing language, rather than rebuild it
from scratch.

From your perspective, knowing more lan­
guages means that you’ll get more interesting
jobs and will be less likely to get bored doing the
same old thing every day. In addition, knowing

multiple languages tends to reduce frustration.
Most large applications today rely on compo­
nents written in a number of computer lan­
guages. In order to understand the application
and how it functions better, you need to know
every language used to construct it.

Knowing multiple languages also makes it
possible to learn new languages faster. After
a while, you start to see patterns in how com­
puter languages are put together, so you spend
less time with the basics and can move right
on to advanced topics. The faster you can learn
new technologies, the greater your opportuni­
ties to work in exciting areas of computer sci­
ence. In short, knowing more languages opens
a lot of doors.

342 Part V: The Part of Tens

 Some developers are unaware that Python is available in some non-obvious
products. For example, even though you can’t use Python scripting with
Internet Information Server (IIS) right out of the box, you can add Python
scripting support to this product using the steps found in the Microsoft
Knowledge Base article at http://support.microsoft.com/kb/276494.
If you aren’t sure whether a particular application can use Python for script-
ing, make sure that you check it out online.

Performing Specialty Scripting
for Applications

A number of products can use Python for scripting purposes. For example, Maya
(http://www.autodesk.com/products/autodesk-maya/overview)
relies on Python for scripting purposes. By knowing which high-end products
support Python, you can find a job working with that application in any business
that uses it. Here are some examples of products that rely on Python for script-
ing needs:

 ✓ 3ds Max

 ✓ Abaqus

 ✓ Blender

 ✓ Cinema 4D

 ✓ GIMP

 ✓ Google App Engine

 ✓ Houdini

 ✓ Inkscape

 ✓ Lightwave

 ✓ Modo

 ✓ MotionBuilder

 ✓ Nuke

 ✓ Paint Shop Pro

 ✓ Scribus

 ✓ Softimage

343 Chapter 18: Ten Ways to Make a Living with Python

This is just the tip of the iceberg. You can also use Python with the GNU
debugger to create more understandable output of complex structures, such
as those found in C++ containers. Some video games also rely on Python as a
scripting language. In short, you could build a career around creating applica-
tion scripts using Python as the programming language.

Administering a Network
More than a few administrators use Python to perform tasks such as monitor-
ing network health or creating utilities that automate tasks. Administrators
are often short of time, so anything they can do to automate tasks is a plus.
In fact, some network management software, such as Trigger (http://
trigger.readthedocs.org/en/latest/), is actually written in Python.
A lot of these tools are open source and free to download, so you can try
them on your network. Also, some interesting articles discuss using Python
for network administration, such as “Intro to Python & Automation for
Network Engineers” at http://packetpushers.net/show-176-intro-
to-python-automation-for-network-engineers/. The point is that
knowing how to use Python on your network can ultimately decrease your
workload and help you perform your tasks more easily. If you want to see
some scripts that are written with network management in mind, check out
25 projects tagged “Network Management” at http://freecode.com/
tags/network-management.

Teaching Programming Skills
Many teachers are looking for a faster, more consistent method of teaching
computer technology. Raspberry Pi (http://www.raspberrypi.org/)
is a single-board computer that makes obtaining the required equipment a
lot less expensive for schools. The smallish device plugs into a television or
computer monitor to provide full computing capabilities with an incredibly
simple setup. Interestingly enough, Python plays a big role into making the
Raspberry Pi into a teaching platform for programming skills (http://www.
piprogramming.org/main/?page_id=372).

 In reality, teachers often use Python to extend native Raspberry Pi capa-
bilities so that it can perform all sorts of interesting tasks (http://www.
raspberrypi.org/tag/python/). The project entitled, Boris, the Twitter
Dino-Bot (http://www.raspberrypi.org/boris-the-twitter-dino-
bot/), is especially interesting. The point is that if you have a teaching goal in
mind, combining Raspberry Pi with Python is a fantastic idea.

344 Part V: The Part of Tens

Helping People Decide on Location
A Geographic Information System (GIS) provides a means of viewing geo-
graphic information with business needs in mind. For example, you could
use GIS to determine the best place to put a new business or to determine
the optimum routes for shipping goods. However, GIS is used for more than
simply deciding on locations — it also provides a means for communicat-
ing location information better than maps, reports, and other graphics, and
a method of presenting physical locations to others. Also interesting is the
fact that many GIS products use Python as their language of choice. In fact,
a wealth of Python-specific information related to GIS is currently available,
such as

 ✓ The GIS and Python Software Laboratory (http://gispython.org/)

 ✓ Python and GIS Resources (http://www.gislounge.com/
python-and-gis-resources/)

 ✓ GIS Programming and Automation (https://www.e-education.psu.
edu/geog485/node/17)

Many GIS-specific products, such as ArcGIS (http://www.esri.com/
software/arcgis), rely on Python to automate tasks. Entire communi-
ties develop around these software offerings, such as Python for ArcGIS
(http://resources.arcgis.com/en/communities/python/). The
point is that you can use your new programming skills in areas other than
computing to earn an income.

Performing Data Mining
Everyone is collecting data about everyone and everything else. Trying to
sift through the mountains of data collected is an impossible task without a
lot of fine-tuned automation. The flexible nature of Python, combined with
its terse language that makes changes extremely fast, makes it a favorite with
people who perform data mining on a daily basis. In fact, you can find an
online book on the topic, A Programmer’s Guide to Data Mining, at http://
guidetodatamining.com/. Python makes data mining tasks a lot easier. The
purpose of data mining is to recognize trends, which means looking for pat-
terns of various sorts. The use of artificial intelligence with Python makes such
pattern recognition possible. A paper on the topic, “Data Mining: Discovering
and Visualizing Patterns with Python” (http://refcardz.dzone.com/
refcardz/data-mining-discovering-and), helps you understand how
such analysis is possible. You can use Python to create just the right tool to
locate a pattern that could net sales missed by your competitor.

345 Chapter 18: Ten Ways to Make a Living with Python

 Of course, data mining is used for more than generating sales. For example,
people use data mining to perform tasks such as locating new planets around
stars or other types of analysis that increase our knowledge of the universe.
Python figures into this sort of data mining as well. You can likely find books
and other resources dedicated to any kind of data mining that you want to
perform, with many of them mentioning Python as the language of choice.

Interacting with Embedded Systems
An embedded system exists for nearly every purpose on the planet. For
example, if you own a programmable thermostat for your house, you’re inter-
acting with an embedded system. Raspberry Pi (mentioned earlier in the
chapter) is an example of a more complex embedded system. Many embed-
ded systems rely on Python as their programming language. In fact, a special
form of Python, Embedded Python (https://wiki.python.org/moin/
EmbeddedPython), is sometimes used for these devices. You can even find
a YouTube presentation on using Python to build an embedded system at
http://www.youtube.com/watch?v=WZoeqnsY9AY.

 Interestingly enough, you might already be interacting with a Python-driven
embedded system. For example, Python is the language of choice for many car
security systems (http://www.pythoncarsecurity.com/). The remote
start feature that you might have relies on Python to get the job done. Your
home automation and security system (http://www.linuxjournal.com/
article/8513) might also rely on Python.

Python is so popular for embedded systems because it doesn’t require com-
pilation. An embedded-system vendor can create an update for any embed-
ded system and simply upload the Python file. The interpreter automatically
uses this file without having to upload any new executables or jump through
any of the types of hoops that other languages can require.

Carrying Out Scientific Tasks
Python seems to devote more time to scientific and numerical process-
ing tasks than many of the computer languages out there. The number of
Python’s scientific and numeric processing modules is staggering (https://
wiki.python.org/moin/NumericAndScientific). Scientists love
Python because it’s small, easy to learn, and yet quite precise in its treat-
ment of data. It’s possible to produce results using just a few lines code. Yes,

346 Part V: The Part of Tens

you could produce the same result using another language, but the other
language might not include the prebuilt modules to perform the task, and it
would most definitely require more lines of code even if it did.

 The two sciences that have dedicated Python modules are space sciences
and life sciences. For example, there is actually a module for performing tasks
related to solar physics. You can also find a module for working in genomic
biology. If you’re in a scientific field, the chances are good that your Python
knowledge will significantly impact your ability to produce results quickly
while your colleagues are still trying to figure out how to analyze the data.

Performing Real-Time Analysis of Data
Making decisions requires timely, reliable, and accurate data. Often, this
data must come from a wide variety of sources, which then require a certain
amount of analysis before becoming useful. A number of the people who
report using Python do so in a management capacity. They use Python to
probe those disparate sources of information, perform the required analysis,
and then present the big picture to the manager who has asked for the infor-
mation. Given that this task occurs regularly, trying to do it manually every
time would be time consuming. In fact, it would simply be a waste of time. By
the time the manager performed the required work, the need to make a deci-
sion might already have passed. Python makes it possible to perform tasks
quickly enough for a decision to have maximum impact.

Previous sections have pointed out Python’s data-mining, number-crunching,
and graphics capabilities. A manager can combine all these qualities while
using a language that isn’t nearly as complex to learn as C++. In addition,
any changes are easy to make, and the manager doesn’t need to worry about
learning programming skills such as compiling the application. A few changes
to a line of code in an interpreted module usually serve to complete the task.

 As with other sorts of occupational leads in this chapter, thinking outside the
box is important when getting a job. A lot of people need real-time analysis.
Launching a rocket into space, controlling product flow, ensuring that pack-
ages get delivered on time, and all sorts of other occupations rely on timely,
reliable, and accurate data. You might be able to create your own new job
simply by employing Python to perform real-time data analysis.

Chapter 19

Ten Interesting Tools
In This Chapter
▶ Keeping track of application bugs

▶ Creating a safe place to test applications

▶ Getting your application placed on a user system

▶ Documenting your application

▶ Writing your application code

▶ Looking for application errors

▶ Working within an interactive environment

▶ Performing application testing

▶ Sorting the import statements in your application

▶ Keeping track of application versions

P
ython, like most other programming languages, has strong third-party
support in the form of various tools. A tool is any utility that enhances

the natural capabilities of Python when building an application. So, a debug-
ger is considered a tool because it’s a utility, but a library isn’t. Libraries are
instead used to create better applications. (You can see some of them listed
in Chapter 20.)

Even making the distinction between a tool and something that isn’t a tool,
such as a library, doesn’t reduce the list by much. Python enjoys access to
a wealth of general-purpose and special tools of all sorts. In fact, the site at
https://wiki.python.org/moin/DevelopmentTools breaks these
tools down into the following 13 categories:

 ✓ AutomatedRefactoringTools

 ✓ BugTracking

 ✓ ConfigurationAndBuildTools

 ✓ DistributionUtilities

 ✓ DocumentationTools

348 Part V: The Part of Tens

 ✓ IntegratedDevelopmentEnvironments

 ✓ PythonDebuggers

 ✓ PythonEditors

 ✓ PythonShells

 ✓ SkeletonBuilderTools

 ✓ TestSoftware

 ✓ UsefulModules

 ✓ VersionControl

Interestingly enough, it’s quite possible that the lists on the Python
DevelopmentTools site aren’t even complete. You can find Python tools listed
in quite a few places online.

Given that a single chapter can’t possibly cover all the tools out there, this
chapter discusses a few of the more interesting tools — those that merit a
little extra attention on your part. After you whet your appetite with this
chapter, seeing what other sorts of tools you can find online is a good idea.
You may find that the tool you thought you might have to create is already
available, and in several different forms.

Tracking Bugs with Roundup
Issue Tracker

You can use a number of bug-tracking sites with Python, such as the fol-
lowing: Github (https://github.com/); Google Code (https://code.
google.com/); BitBucket (https://bitbucket.org/); and Launchpad
(https://launchpad.net/). However, these public sites are generally not
as convenient to use as your own specific, localized bug-tracking software.
You can use a number of tracking systems on your local drive, but Roundup
Issue Tracker (http://roundup.sourceforge.net/) is one of the better
offerings. Roundup should work on any platform that supports Python, and it
offers these basic features without any extra work:

 ✓ Bug tracking

 ✓ TODO list management

349 Chapter 19: Ten Interesting Tools

If you’re willing to put a little more work into the installation, you can get
additional features, and these additional features are what make the product
special. However, to get them, you may need to install other products, such
as a DataBase Management System (DBMS). The product instructions tell
you what to install and which third-party products are compatible. After you
make the additional installations, you get these upgraded features:

 ✓ Customer help-desk support with the following features:

 •	Wizard for the phone answerers

 •	Network links

 •	System and development issue trackers

 ✓ Issue management for Internet Engineering Task Force (IETF) working
groups

 ✓ Sales lead tracking

 ✓ Conference paper submission

 ✓ Double-blind referee management

 ✓ Blogging (extremely basic right now, but will become a stronger offering
later)

Creating a Virtual Environment
Using VirtualEnv

Reasons abound to create virtual environments, but the main reason for to
do so with Python is to provide a safe and known testing environment. By
using the same testing environment each time, you help ensure that the appli-
cation has a stable environment until you have completed enough of it to test
in a production-like environment. VirtualEnv (https://pypi.python.org/
pypi/virtualenv) provides the means to create a virtual Python environ-
ment that you can use for the early testing process or to diagnose issues that
could occur because of the environment. It’s important to remember that
there are at least three standard levels of testing that you need to perform:

 ✓ Bug: Checking for errors in your application

 ✓ Performance: Validating that your application meets speed, reliability,
and security requirements

 ✓ Usability: Verifying that your application meets user needs and will react
to user input in the way the user expects

350 Part V: The Part of Tens

 Because of the manner in which most Python applications are used (see
Chapter 18 for some ideas), you generally don’t need to run them in a virtual
environment after the application has gone to a production site. Most Python
applications require access to the outside world, and the isolation of a virtual
environment would prevent that access.

Installing Your Application
Using PyInstaller

Users don’t want to spend a lot of time installing your application, no matter
how much it might help them in the end. Even if you can get the user to
attempt an installation, less skilled users are likely to fail. In short, you need
a surefire method of getting an application from your system to the user’s
system. Installers, such as PyInstaller (http://www.pyinstaller.org/),
do just that. They make a nice package out of your application that the user
can easily install.

Never test on a production server
A mistake that some developers make is to test
their unreleased application on the production
server where the user can easily get to it. Of the
many reasons not to test your application on a
production server, data loss has to be the most
important. If you allow users to gain access to
an unreleased version of your application that
contains bugs that might corrupt the database
or other data sources, the data could be lost or
damaged permanently.

You also need to realize that you get only one
chance to make a first impression. Many soft­
ware projects fail because users don’t use the
end result. The application is complete, but no
one uses it because of the perception that the
application is flawed in some way. Users have

only one goal in mind: to complete their tasks
and then go home. When users see that an
application is costing them time, they tend not
to use it.

Unreleased applications can also have secu­
rity holes that nefarious individuals will use to
gain access to your network. It doesn’t matter
how well your security software works if you
leave the door open for anyone to come in.
After they have come in, getting rid of them is
nearly impossible, and even if you do get rid of
them, the damage to your data is already done.
Recovery from security breaches is notoriously
difficult — and sometimes impossible. In short,
never test on your production server because
the costs of doing so are simply too high.

351 Chapter 19: Ten Interesting Tools

Fortunately, PyInstaller works on all the platforms that Python supports, so
you need just the one tool to meet every installation need you have. In addi-
tion, you can get platform-specific support when needed. For example, when
working on a Windows platform, you can create code-signed executables.
Mac developers will appreciate that PyInstaller provides support for bundles.
In many cases, avoiding the platform-specific features is best unless you
really do need them. When you use a platform-specific feature, the installa-
tion will succeed only on the target platform.

 A number of the installer tools that you find online are platform specific. For
example, when you look at an installer that reportedly creates executables,
you need to be careful that the executables aren’t platform specific (or at least
match the platform you want to use). It’s important to get a product that will
work everywhere it’s needed so that you don’t create an installation package
that the user can’t use. Having a language that works everywhere doesn’t help
when the installation package actually hinders installation.

Building Developer Documentation
Using pdoc

Two kinds of documentation are associated with applications: user and
developer. User documentation shows how to use the application, while
developer documentation shows how the application works. A library
requires only one sort of documentation, developer, while a desktop applica-
tion may require only user documentation. A service might actually require

Avoid the orphaned product
Some Python tools floating around the Internet
are orphaned, which means that the devel­
oper is no longer actively supporting them.
Developers still use the tool because they
like the features it supports or how it works.
However, doing so is always risky because
you can’t be sure that the tool will work with
the latest version of Python. The best way to
approach tools is to get tools that are fully sup­
ported by the vendor who created them.

If you absolutely must use an orphaned tool
(such as when an orphaned tool is the only
one available to perform the task), make sure
that the tool still has good community support.
The vendor may not be around any longer, but
at least the community will provide a source of
information when you need product support.
Otherwise, you’ll waste a lot of time trying to
use an unsupported product that you might
never get to work properly.

352 Part V: The Part of Tens

both kinds of documentation depending on who uses it and how the service
is put together. The majority of your documentation is likely to affect devel-
opers, and pdoc (https://github.com/BurntSushi/pdoc) is a simple
solution for creating it.

The pdoc utility relies on the documentation that you place in your code in
the form of docstrings and comments. The output is in the form of a text file
or an HTML document. You can also have pdoc run in a way that provides
output through a web server so that people can see the documentation
directly in a browser. This is actually a replacement for epydoc, which is no
longer supported by its originator.

Developing Application Code
Using Komodo Edit

Several chapters have discussed the issue of Interactive Development
Environments (IDEs), but none have made a specific recommendation. The
IDE you choose depends partly on your needs as a developer, your skill level,
and the kinds of applications you want to create. Some IDEs are better than
others when it comes to certain kinds of application development. One of the
better general-purpose IDEs for novice developers is Komodo Edit (http://
komodoide.com/komodo-edit/). You can obtain this IDE free, and it
includes a wealth of features that will make your coding experience much
better than what you’ll get from IDLE. Here are some of those features:

 ✓ Support for multiple programming languages

 ✓ Automatic completion of keywords

 ✓ Indentation checking

 ✓ Project support so that applications are partially coded before you even
begin

 ✓ Superior support

However, the thing that sets Komodo Edit apart from other IDEs is that it has
an upgrade path. When you start to find that your needs are no longer met by
Komodo Edit, you can upgrade to Komodo IDE (http://komodoide.com/),
which includes a lot of professional level support features, such as code pro-
filing (a feature that checks application speed) and a database explorer (to
make working with databases easier).

353 Chapter 19: Ten Interesting Tools

Debugging Your Application
Using pydbgr

A high-end IDE, such as Komodo IDE, comes with a complete debugger. Even
Komodo Edit comes with a simple debugger. However, if you’re using something
smaller, less expensive, and less capable than a high-end IDE, you might not
have a debugger at all. A debugger helps you locate errors in your application
and fix them. The better your debugger, the less effort required to locate and fix
the error. When your editor doesn’t include a debugger, you need an external
debugger such as pydbgr (https://code.google.com/p/pydbgr/).

 A reasonably good debugger includes a number of standard features, such as
code colorization (the use of color to indicate things like keywords). However,
it also includes a number of nonstandard features that set it apart. Here are
some of the standard and nonstandard features that make pydbgr a good
choice when your editor doesn’t come with a debugger:

 ✓ Smart eval: The eval command helps you see what will happen when
you execute a line of code, before you actually execute it in the applica-
tion. It helps you perform “what if” analysis to see what is going wrong
with the application.

 ✓ Out-of-process debugging: Normally you have to debug applications
that reside on the same machine. In fact, the debugger is part of the
application’s process, which means that the debugger can actually inter-
fere with the debugging process. Using out-of-process debugging means
that the debugger doesn’t affect the application and you don’t even have
to run the application on the same machine as the debugger.

 ✓ Thorough byte-code inspection: Viewing how the code you write is
turned into byte code (the code that the Python interpreter actually
understands) can sometimes help you solve tough problems.

 ✓ Event filtering and tracing: As your application runs in the debugger, it
generates events that help the debugger understand what is going on.
For example, moving to the next line of code generates an event, return-
ing from a function call generates another event, and so on. This feature
makes it possible to control just how the debugger traces through an
application and which events it reacts to.

354 Part V: The Part of Tens

Entering an Interactive Environment
Using IPython

The Python shell works fine for many interactive tasks. You’ve used it exten-
sively in this book. However, you may have already noted that the default
shell has certain deficiencies (and if you haven’t, you’ll notice them as you
work through more advanced examples). Of course, the biggest deficiency is
that the Python shell is a pure text environment in which you must type com-
mands to perform any given task. A more advanced shell, such as IPython
(http://ipython.org/), can make the interactive environment friendlier
by providing GUI features so that you don’t have to remember the syntax for
odd commands.

 IPython is actually more than just a simple shell. It provides an environment
in which you can interact with Python in new ways, such as by displaying
graphics that show the result of formulas you create using Python. In addition,
IPython is designed as a kind of front end that can accommodate other lan-
guages. The IPython application actually sends commands to the real shell in
the background, so you can use shells from other languages such as Julia and
Haskell. (Don’t worry if you’ve never heard of these languages.)

One of the more exciting features of IPython is the ability to work in parallel
computing environments. Normally a shell is single threaded, which means
that you can’t perform any sort of parallel computing. In fact, you can’t
even create a multithreaded environment. This feature alone makes IPython
worthy of a trial.

Testing Python Applications
Using PyUnit

At some point, you need to test your applications to ensure that they work
as instructed. You can test them by entering in one command at a time and
 verifying the result, or you can automate the process. Obviously, the auto-
mated approach is better because you really do want to get home for dinner
someday and manual testing is really, really slow (especially when you
make mistakes, which are guaranteed to happen). Products such as PyUnit
(https://wiki.python.org/moin/PyUnit) make unit testing (the test-
ing of individual features) significantly easier.

355 Chapter 19: Ten Interesting Tools

The nice part of this product is that you actually create Python code to per-
form the testing. Your script is simply another, specialized, application that
tests the main application for problems.

 You may be thinking that the scripts, rather than your professionally writ-
ten application, could be bug ridden. The testing script is designed to be
extremely simple, which will keep scripting errors small and quite noticeable.
Of course, errors can (and sometimes do) happen, so yes, when you can’t find
a problem with your application, you do need to check the script.

Tidying Your Code Using Isort
It may seem like an incredibly small thing, but code can get messy, especially
if you don’t place all your import statements at the top of the file in alpha-
betical order. In some situations, it becomes difficult, if not impossible, to
figure out what’s going on with your code when it isn’t kept neat. The Isort
utility (http://timothycrosley.github.io/isort/) performs the
seemingly small task of sorting your import statements and ensuring that
they all appear at the top of the source code file. This small step can have a
significant effect on your ability to understand and modify the source code.

Just knowing which modules a particular module needs can be a help in
locating potential problems. For example, if you somehow get an older ver-
sion of a needed module on your system, knowing which modules the appli-
cation needs can make the process of finding that module easier.

In addition, knowing which modules an application needs is important when
it comes time to distribute your application to users. Knowing that the user
has the correct modules available helps ensure that the application will run
as anticipated.

Providing Version Control
Using Mercurial

The applications you created while working through this book aren’t very
complex. In fact, after you finish this book and move on to more advanced
training applications, you’re unlikely to need version control. However, after
you start working in an organizational development environment in which
you create real applications that users need to have available at all times,
version control becomes essential. Version control is simply the act of keeping

356 Part V: The Part of Tens

track of the changes that occur in an application between application releases
to the production environment. When you say you’re using MyApp 1.2, you’re
referring to version 1.2 of the MyApp application. Versioning lets everyone
know which application release is being used when bug fixes and other kinds
of support take place.

Numerous version control products are available for Python. One of the
more interesting offerings is Mercurial (http://mercurial.selenic.
com/). You can get a version of Mercurial for almost any platform that
Python will run on, so you don’t have to worry about changing products
when you change platforms. (If your platform doesn’t offer a binary, execut-
able, release, you can always build one from the source code provided on the
download site.)

Unlike a lot of the other offerings out there, Mercurial is free. Even if you find
that you need a more advanced product later, you can gain useful experience
by working with Mercurial on a project or two.

 The act of storing each version of an application in a separate place so that
changes can be undone or redone as needed is called source code manage-
ment. For many people, source code management seems like a hard task.
Because the Mercurial environment is quite forgiving, you can learn about
source control management in a friendly environment. Being able to interact
with any version of the source code for a particular application is essential
when you need to go back and fix problems created by a new release.

The best part about Mercurial is that it provides a great online tutorial at
http://mercurial.selenic.com/wiki/Tutorial. Following along on
your own machine is the best way to learn about source control manage-
ment, but even just reading the material is helpful. Of course, the first tutorial
is all about getting a good installation of Mercurial. The tutorials then lead
you through the process of creating a repository (a place where application
versions are stored) and using the repository as you create your application
code. By the time you finish the tutorials, you should have a great idea of
how source control should work and why versioning is an important part of
application development.

Chapter 20

Ten Libraries You Need
to Know About

In This Chapter
▶ Securing your data using cryptology

▶ Working with databases

▶ Getting to where you’re going and finding new locations

▶ Presenting the user with a GUI

▶ Creating tables that users will enjoy viewing

▶ Working with graphics

▶ Finding the information you need

▶ Allowing access to Java code from your Python application

▶ Obtaining access to local network resources

▶ Using resources found online

P
ython provides you with considerable power when it comes to creating
average applications. However, most applications aren’t average and

require some sort of special processing to make them work. That’s where
libraries come into play. A good library will extend Python functionality so
that it supports the special programming needs that you have. For example,
you might need to plot statistics or interact with a scientific device. These
sorts of tasks require the use of a library.

 One of the best places to find a library listing online is the UsefulModules site
at https://wiki.python.org/moin/UsefulModules. Of course, there are
many other places to look for libraries as well. For example, the article entitled
“7 Python Libraries you should know about” (http://doda.co/7-python-
libraries-you-should-know-about) provides you with a relatively com-
plete description of the seven libraries its title refers to. If you’re working on a
specific platform, such as Windows, you can find platform-specific sites, such
as Unofficial Windows Binaries for Python Extension Packages (http://www.
lfd.uci.edu/~gohlke/pythonlibs/). The point is that you can find lists
of libraries everywhere.

358 Part V: The Part of Tens

The purpose of this chapter isn’t to add to your already overflowing list of
potential library candidates. Instead, it provides you with a list of ten librar-
ies that work on every platform and provide basic services that just about
everyone will need. Think of this chapter as a source for a core group of
libraries to use for your next coding adventure.

Developing a Secure Environment
Using PyCrypto

Data security is an essential part of any programming effort. The reason that
applications are so valued is that they make it easy to manipulate and use
data of all sorts. However, the application must protect the data or the efforts
to work with it are lost. It’s the data that is ultimately the valuable part of a
business — the application is simply a tool. Part of protecting the data is to
ensure that no one can steal it or use it in a manner that the originator didn’t
intend, which is where cryptographic libraries such as PyCrypto (https://
www.dlitz.net/software/pycrypto/) come into play.

 The main purpose of this library is to turn your data into something that others
can’t read while it sits in permanent storage. The purposeful modification of
data in this manner is called encryption. However, when you read the data into
memory, a decryption routine takes the mangled data and turns it back into its
original form so that the application can manage it. At the center of all this is
the key, which is used to encrypt and decrypt the data. Ensuring that the key
remains safe is part of your application coding as well. You can read the data
because you have the key; no others can because they lack the key.

Interacting with Databases
Using SQLAlchemy

A database is essentially an organized manner of storing repetitive or struc-
tured data on disk. For example, customer records (individual entries in the
database) are repetitive because each customer has the same sort of informa-
tion requirements, such as name, address, and telephone number. The precise
organization of the data determines the sort of database you’re using. Some
database products specialize in text organization, others in tabular information,
and still others in random bits of data (such as readings taken from a scientific
instrument). Databases can use a tree-like structure or a flat-file configuration
to store data. You’ll hear all sorts of odd terms when you start looking into
DataBase Management System (DBMS) technology — most of which mean
something only to a DataBase Administrator (DBA) and won’t matter to you.

359 Chapter 20: Ten Libraries You Need to Know About

 The most common type of database is called a Relational DataBase Management
System (RDBMS), which uses tables that are organized into records and fields
(just like a table you might draw on a sheet of paper). Each field is part of a
column of the same kind of information, such as the customer’s name. Tables
are related to each other in various ways, so creating complex relationships
is possible. For example, each customer may have one or more entries in a
purchase order table, and the customer table and the purchase order table are
therefore related to each other.

An RDBMS relies on a special language called the Structured Query Language
(SQL) to access the individual records inside. Of course, you need some means
of interacting with both the RDBMS and SQL, which is where SQLAlchemy
(http://www.sqlalchemy.org/) comes into play. This product reduces the
amount of work needed to ask the database to perform tasks such as returning
a specific customer record, creating a new customer record, updating an exist-
ing customer record, and deleting an old customer record.

Seeing the World Using Google Maps
Geocoding (the finding of geographic coordinates, such as longitude and
latitude from geographic data, such as address) has lots of uses in the world
today. People use the information to do everything from finding a good
restaurant to locating a lost hiker in the mountains. Getting from one place
to another often revolves around geocoding today as well. Google Maps
(https://pypi.python.org/pypi/googlemaps/) lets you add direc-
tional data to your applications.

In addition to getting from one point to another or finding a lost soul in the
desert, Google Maps can also help in Geographic Information System (GIS)
applications. The “Helping People Decide on Location” section of Chapter 18
describes this particular technology in more detail, but essentially, GIS is all
about deciding on a location for something or determining why one location
works better than another location for a particular task. In short, Google
Maps presents your application with a look at the outside world that it can
use to help your user make decisions.

Adding a Graphical User
Interface Using TkInter

Users respond to the Graphical User Interface (GUI) because it’s friendlier
and requires less thought than using a command-line interface. Many prod-
ucts out there can give your Python application a GUI. However, the most

360 Part V: The Part of Tens

commonly used product is TkInter (https://wiki.python.org/moin/
TkInter). Developers like it so much because TkInter keeps things simple.
It’s actually an interface for the Tool Command Language (Tcl)/Toolkit (Tk)
found at http://www.tcl.tk/. A number of languages use Tcl/Tk as the
basis for creating a GUI.

 You might not relish the idea of adding a GUI to your application. Doing so
tends to be time consuming and doesn’t make the application any more func-
tional (it also slows the application down in many cases). The point is that
users like GUIs, and if you want your application to see strong use, you need
to meet user requirements.

Providing a Nice Tabular Data
Presentation Using PrettyTable

Displaying tabular data in a manner the user can understand is important.
From the examples you’ve seen throughout the book, you know that Python
stores this type of data in a form that works best for programming needs.
However, users need something that is organized in a manner that humans
understand and that is visually appealing. The PrettyTable library (https://
pypi.python.org/pypi/PrettyTable) makes it easy to add an appealing
tabular presentation to your command-line application.

Enhancing Your Application
with Sound Using PyAudio

Sound is a useful way to convey certain types of information to the user. Of
course, you have to be careful in using sound because special-needs users
might not be able to hear it, and for those who can, using too much sound
can interfere with normal business operations. However, sometimes audio is
an important means of communicating supplementary information to users
who can interact with it (or of simply adding a bit of pizzazz to make your
application more interesting).

One of the better platform-independent libraries to make sound work with
your Python application is PyAudio (http://people.csail.mit.edu/
hubert/pyaudio/). This library makes it possible to record and play back
sounds as needed (such as a user recording an audio note of tasks to perform
later and then playing back the list of items as needed).

361 Chapter 20: Ten Libraries You Need to Know About

 Working with sound on a computer always involves trade-offs. For example, a
platform-independent library can’t take advantage of special features that a par-
ticular platform might possess. In addition, it might not support all the file for-
mats that a particular platform uses. The reason to use a platform-independent
library is to ensure that your application provides basic sound support on all
systems that it might interact with.

Manipulating Images Using PyQtGraph
Humans are visually oriented. If you show someone a table of informa-
tion and then show the same information as a graph, the graph is always
the winner when it comes to conveying information. Graphs help people
see trends and understand why the data has taken the course that it has.
However, getting those pixels that represent the tabular information onscreen
is difficult, which is why you need a library such as PyQtGraph (http://
www.pyqtgraph.org/) to make things simpler.

Classifying Python sound technologies
It’s important to realize that sound comes in
many forms in computers. The basic multime­
dia services provided by Python (see the docu­
mentation at https://docs.python.
org/3/library/mm.html) provide
essential playback functionality. You can also
write certain types of audio files, but the selec­
tion of file formats is limited. In addition, some
modules, such as winsound (https://
docs.python.org/3/library/
winsound.html), are platform depen­
dent, so you can’t use them in an application
designed to work everywhere. The standard
Python offerings are designed to provide basic
multimedia support for playing back system
sounds.

The middle ground, augmented audio function­
ality designed to improve application usability,
is covered by libraries such as PyAudio. You

can see a list of these libraries at https://
wiki.python.org/moin/Audio .
However, these libraries usually focus on busi­
ness needs, such as recording notes and play­
ing them back later. Hi­fidelity output isn’t part
of the plan for these libraries.

Gamers need special audio support to ensure
that they can hear special effects, such as a
monster walking behind them. These needs
are addressed by libraries such as PyGame
(http://www.pygame.org/news.
html). When using these libraries, you need
higher­end equipment and have to plan to spend
considerable time working on just the audio fea­
tures of your application. You can see a list of
these libraries at https://wiki.python.
org/moin/PythonGameLibraries.

362 Part V: The Part of Tens

Even though the library is designed around engineering, mathematical, and
scientific requirements, you have no reason to avoid using it for other pur-
poses. PyQtGraph supports both 2D and 3D displays, and you can use it to
generate new graphics based on numeric input. The output is completely
interactive, so a user can select image areas for enhancement or other sorts
of manipulation. In addition, the library comes with a wealth of useful wid-
gets (controls, such as buttons, that you can display onscreen) to make the
coding process even easier.

 Unlike many of the offerings in this chapter, PyQtGraph isn’t a free-standing
library, which means that you must have other products installed to use it.
This isn’t unexpected because PyQtGraph is doing quite a lot of work. You
need these items installed on your system to use it:

 ✓ Python version 2.7 or above

 ✓ PyQt version 4.8 or above (https://wiki.python.org/moin/PyQt)
or PySide (https://wiki.python.org/moin/PySide)

 ✓ numpy (http://www.numpy.org/)

 ✓ scipy (http://www.scipy.org/)

 ✓ PyOpenGL (http://pyopengl.sourceforge.net/)

Locating Your Information Using IRLib
Finding your information can be difficult when the information grows to a cer-
tain size. Consider your hard drive as a large, free-form, tree-based database
that lacks a useful index. Any time such a structure becomes large enough,
data simply gets lost. (Just try to find those pictures you took last summer
and you’ll get the idea.) As a result, having some type of search capability
built into your application is important so that users can find that lost file or
other information.

 A number of search libraries are available for Python. The problem with most
of them is that they are hard to install or don’t provide consistent platform
support. In fact, some of them work on only one or two platforms. However,
IRLib (https://github.com/gr33ndata/irlib) is written in pure Python,
which ensures that it works on every platform. If you find that IRLib doesn’t
meet your needs, make sure the product you do get will provide the required
search functionality on all the platforms you select and that the installation
requirements are within reason.

363 Chapter 20: Ten Libraries You Need to Know About

IRLab works by creating a search index of whatever information you want
to work with. You can then save this index to disk for later use. The search
mechanism works through the use of metrics — you locate one or more
entries that provide a best fit for the search criteria.

Creating an Interoperable Java
Environment Using JPype

Python does provide access to a huge array of libraries, and you’re really
unlikely to use them all. However, you might be in a situation in which you
find a Java library that is a perfect fit but can’t use it from your Python appli-
cation unless you’re willing to jump through a whole bunch of hoops. The
JPype library (http://jpype.sourceforge.net/) makes it possible to
access most (but not all) of the Java libraries out there directly from Python.
The library works by creating a bridge between the two languages at the
byte-code level. Consequently, you don’t have to do anything weird to get
your Python application to work with Java.

Converting your Python application to Java
There are many different ways to achieve
interoperability between two languages. Creating
a bridge between them, as JPype does, is one
way. Another alternative is to convert the code
created for one language into code for the other
language. This is the approach used by Jython
(https://wiki.python.org/jython/).
This utility converts your Python code into Java
code so that you can make full use of Java func­
tionality in your application while maintaining the
features that you like about Python.

You’ll encounter trade­offs in lan­
guage interoperability no matter
which solution you use. In the
case of JPype, you won’t have

access to some Java libraries. In addition,
there is a speed penalty in using this approach
because the JPype bridge is constantly con­
verting calls and data. The problem with Jython
is that you lose the ability to modify your code
after conversion. Any changes that you make
will create an incompatibility between the origi­
nal Python code and its Java counterpart. In
short, no perfect solutions exist for the problem
of getting the best features of two languages
into one application.

364 Part V: The Part of Tens

Accessing Local Network Resources
Using Twisted Matrix

Depending on your network setup, you may need access to files and other
resources that you can’t reach using the platform’s native capabilities. In this
case, you need a library that makes such access possible, such as Twisted
Matrix (https://twistedmatrix.com/trac/). The basic idea behind this
library is to provide you with the calls needed to establish a connection, no
matter what sort of protocol is in use.

The feature that makes this library so useful is its event-driven nature. This
means that your application need not get hung up while waiting for the net-
work to respond. In addition, the use of an event-driven setup makes asyn-
chronous communication (in which a request is sent by one routine and then
handled by a completely separate routine) easy to implement.

Accessing Internet Resources
Using Libraries

Although products such as Twisted Matrix can handle online communica-
tion, getting a dedicated HTTP protocol library is often a better option when
working with the Internet because a dedicated library is both faster and more
feature complete. When you specifically need HTTP or HTTPS support, using
a library such as httplib2 (https://github.com/jcgregorio/httplib2)
is a good idea. This library is written in pure Python and makes handling
HTTP-specific needs, such as setting a Keep-Alive value, relatively easy. (A
Keep-Alive is a value that determines how long a port stays open waiting for
a response so that the application doesn’t have to continuously re-create the
connection, wasting resources and time as a result.)

You can use httplib2 for any Internet-specific methodology — it provides
full support for both the GET and POST request methods. This library also
includes routines for standard Internet compression methods, such as deflate
and gzip. It also supports a level of automation. For example, httplib2 adds
ETags back into PUT requests when resources are already cached.

• Symbols and Numerics •
− (minus sign), 97, 98, 103
!= (not equal) operator, 98, 103
(number sign), 74, 76
% operator, 98, 103
%= operator, 101, 103
& operator, 100, 103
() parentheses, 103, 106, 246
* (asterisk)

multiplication operator, 98, 103, 236
variable argument lists, 111, 281

** operator, 98, 103
**= operator, 101, 103
*= operator, 101, 103
/ (forward slash), 98, 103, 295
// operator, 98
/= operator, 101, 103
//= operator, 101, 103
: (colon), 106, 118, 125, 219
[] square brackets, 211, 226, 229
\ (backslash), 209–210, 295
^ operator, 100, 103
{ } curly brackets, 219
| operator, 100
~ operator, 97, 100, 103
+ (plus sign)

addition operator, 98
concatenation using, 212, 236
operator precedence, 103
overloading, 283–284
as unary operator, 97
using indentation with, 72
using with tuples, 247

+= operator, 101, 103
< (less-than) operator, 99, 103

<< operator, 100, 103
<= (less-than or equal) operator, 99, 103
= (assignment) operator, 85, 101, 103
-= operator, 101, 103
== (equality) operator, 98, 103, 118
> (greater-than) operator, 98, 103
>= (greater-than or equal) operator,

99, 103
>> operator, 100, 103
" (double quotes), 74, 207, 209
' (single quote), 207, 209
3ds Max, 342

• A •
\a escape sequence, 210
Abaqus, 342
absolute paths, 295
accented characters, 209
accessors, 285
action warning level, 43
Add to Path option, 26
__add__() function, 246, 247, 283
Additional Help Sources feature, IDLE, 66
aggdraw library, 333
AIX (Advanced IBM Unix), 21
Alice Educational Software, 17
alignment, string, 220
American Standard Code for Information

Interchange (ASCII), 206, 210
Amiga Research OS (AROS), 21
and operator, 99, 103
append() function, 193, 232, 257,

264, 305
appendleft() function, 264
Apple Siri, 7

Index

Beginning Programming with Python For Dummies

Application System 400 (AS/400), 22
applications

commands in, 68–69
commercial, written in Python, 18
compile time errors, 152
creating in Edit window, 67–68
CRUD and, 39
debugging, 353
decision-making and, 117
defined, 9
designing, 13–14
installing using PyInstaller, 350–351
loading in Edit window, 79
multithreaded, 261
overview, 12
procedures and, 10
purpose of, 13
quitting, 237
README files, 40
running from command line, 78
running from IDLE, 71–72, 79–80
runtime errors, 152
saving files for, 69–70
usage types, 16–17

apt-get command, 30–31
ArcGIS, 344
*args argument list, 281
arguments, command-line, 42
arguments, exception

listing, 163–164
overview, 161–163

arguments, function
accessing using keywords, 110
default values for, 110–111
overview, 108
positional, 110
required, 108–110
variable number of, 111–112

arguments, method, 281–282
arithmetic operators

listing of, 97–98
precedence, 103

ArithmeticError exception, 167, 169
AROS (Amiga Research OS), 21
as clause, 162
as_string() function, 320
AS/400 (Application System 400), 22
ASCII (American Standard Code for

Information Interchange), 206, 210
ASP.NET, 336
assignment operators

assigning value to variable, 85
listing of, 101
precedence, 103

asterisk (*)
multiplication operator, 98, 103, 236
variable argument lists, 111, 281

attributes, module, 184, 193–197
audio, 360–361

• B •
backslash (\), 209–210, 295
backspace character, 210
Base 2, 86
Base 8, 86
Base 10, 86
Base 16, 86
b command, 199
\b escape sequence, 210
-b option, 42
-bb option, 42
-B option, 42, 44
BeOS, 22
bin() function, 86
binary codes, 12
binary operators, 96, 103
Binary to Decimal to Hexadecimal

Converter, 100
BitBucket, 348
bitwise operators, 99–100, 103
Blender, 342
blue text in IDLE, 61
bool() function, 306

366

367 Index

Boolean type, 89–90
break statements

overview, 136–138
for while statements, 144

bugs
defined, 150
tracking sites for, 348
using virtual environments, 349

__builtins__ attribute, 194
byte code, 353
byte type, 42, 45
bytearray type, 42
-c option, 43

• C •
C#

job opportunities and, 15
Python versus, 19
user interfaces, 17

__cached__ attribute, 194
caller, 105, 175–176
capitalization, 154, 171
capitalize() function, 213
car security systems, 345
Carnegie Mellon University, 17
carriage return character, 210
Cascading Style Sheets (CSS), 336
CASE (Computer Aided Software

Engineering), 17
case sensitivity, 154
catching exceptions. See exceptions,

handling
category warning level, 43
C/C++, 15, 340
celementtree library, 333
center() function, 213, 216
CentOS, 29
CGI (Common Gateway Interface), 332
characters

ASCII, 206–207
creating strings from, 207–208

escape sequences, 209–210
selecting individual in string, 211–213
sets of, 207
special, 208–211

child classes, 287
Cinema 4D, 342
__class__ attribute, 271
classes

built-in attributes, 271–272
class suite, 270
constructors, 275–277
creating, 269–271
creating external, 284–285
explained, 268–269
extending, 287–290
importance of application organization,

267
importing module for, 286
inheritance, 287
method arguments, 281–282
methods, 273–275
overloading operators, 282–284
using external, 285–287
variables, 277–280

clear() function, 232, 234, 241, 253
client (web) applications, 332
CMS (Content Management System), 332
code

blocks of, 120–121
cleaning using Isort, 355
color coding, 61, 63–64
commenting out, 75–77
comments in, 74–75
common mistakes, 336–337
grouping into collections, 184–185
highlighting, 63–64
indentation, 72–73
inspecting, 43
introspection, 331
optimizing, 43
readability, 1, 15
reusability, 104–105

367

Beginning Programming with Python For Dummies

runnable, 184
spaghetti code, 267
understandable, 93
using Edit window, 67–68
version control, 355–356

collections, 241, 243–244
colon (:), 106, 118, 125, 219
color coding, 61, 63–64
Comma Separated Values (CSV), 297
command-line Python. See also IDLE

accessing from command prompt, 34–35
advantages of, 40
arguments, 42
close button of terminal, 55
commands in, 46
Enter key in, 46
environment variables and, 44–45
exiting, 54–56
help mode, 48–49
IDLE versus, 58
options for, 42–44
running applications, 78
starting, 41
viewing result in, 46–47

comments
commenting out code, 75–77
multiline, 74–75
single-line, 74
uses for, 75

Common Gateway Interface (CGI), 332
communication

applications and, 9, 13
computers and, 7–8
exceptions and, 150–151

comparisons
function output, 114
if statements, 121–123
overview, 94–95
precedence, 103

compile time errors, 152, 154
complex numbers, 88

Computer Aided Software Engineering
(CASE), 17

computers
characters and, 206–207
communication with, 7–8
comparisons and, 95
CRUD, 39
data storage, 84
exceptions, 150–151
lists and, 225–226
preciseness of, 11
procedures, 10–11
programming languages, 12
purpose of applications, 9
strings and, 205

concatenation
creating lists using, 236
defined, 72
using + operator, 212
using with tuples, 247

conditions for if statements, 118
configuration

environment variables, 44–45
IDLE, 63–66

console library, 333
constants, 193
constructors, 275–277
Content Management System (CMS), 332
Content-Type header, 320
Context-Transfer-Encoding

header, 320
continue statements

overview, 138–139
pass clause versus, 140
for while statements, 144

control characters, 208–209, 296
control statements
if statements, 118–123
if...elif statements, 125–128
if...else statements, 124–125
nesting, 129–132
switch statement and, 128

368
code (continued)

369369 Index

copy() function, 232, 234
copyright() function, 48
copyright messages, 43
count() function, 217, 218, 244
Counter object, 240–242
Create, Read, Update, Delete.

See CRUD
credits() command, 48–49
cross-platform support, 19, 21–22
CRUD (Create, Read, Update, Delete)

applications and, 83
defined, 39
file storage, 293–294
for lists, 232

CSS (Cascading Style Sheets), 336
CSV (Comma Separated Values), 297
curly brackets { }, 219
current directory, 191
-d option, 43, 44

• D •
data analysis, real-time, 346
data integrity, 294
data mining, 344–345
data storage

assigning values, 85
creating files, 298–301
deleting files, 308
file storage, 294–295
purpose of, 83
reading files, 301–303
structure of content, 295–298
variables, 84
writing data to files, 303–307

data types
Boolean, 89–90
complex numbers, 88
dates and times, 91–92
defined, 85
determining for variable, 90
floating-point values, 87–88

integers, 86–87
numeric types, 89
strings, 90–91

Database Administrator (DBA), 358
Database Management Systems

(DBMSs), 332, 349, 358
databases, 16, 358–359
Datalist argument, 299
DataReader class, 302
DataWriter class, 299–300
dates and times, 45, 91–92
day value, 92
DBA (Database Administrator), 358
DBMSs (Database Management

Systems), 332, 349, 358
debugging

defined, 150
starting debugger, 43
using pydbgr, 353

decryption, 358
default values for arguments, 110–111
del command, 253
deleting files, 308
delimiters, 214, 296
deque type

defined, 244
sequence types, 224
using, 263–265

development tools, 18
dictionaries

creating, 249
defined, 244
overview, 248–249
sequence types, 224
as switch statement, 253–256
using, 250–253

dir() function, 164, 193, 228, 271
directories, 294
division operator (/), 98, 103
doc() function, 198
__doc__ attribute, 194

370 Beginning Programming with Python For Dummies

documentation
accessing from IDLE, 62–63
in comments, 75
creating using pdoc, 351–352
online, 330
opening pydoc application, 198–200
quick-access links, 200–201
searching, 202–204

.docx files, 296
double quotes ("), 74, 207, 209
downloading Python, 22–23
drawing characters, 209
dynamic systems, 88
-E option, 43

• E •
Edit window, IDLE, 67–68, 79
effbot library, 333
elementsoap library, 333
elementtidy library, 333
elementtree library, 333
elif clause, 125–126, 237
else clause

for if statements, 124–125
for loops, 141–142
try block and, 157
for while statements, 144

email
creating HTML message, 324–325
creating text message, 323–324
envelope analogy, 312–313
host address, 313–314
hostname, 317–318
HowStuffWorks article, 310
letter analogy, 311–312, 318–319
MIME types, 319–321
ports, 312, 314–316
sending transmission, 321–322
SMTP, 309–310
subtypes, 322
viewing output, 325–326

email.mime module, 319
Embedded Python, 345
empty() function, 261
encryption, 358
endless loops, 143
endswith() function, 217
engineering applications, 16, 88
Enter key, 46
enumerate() function, 281
envelope analogy, 311, 312–313
environment variables
ERRORLEVEL environment variable, 54
ignoring, 43
PATH environment variable, 26, 34–35
Python configuration, 35, 44–45, 191

equality (==) operator, 98, 103, 118
errno argument, 162
ERRORLEVEL environment variable, 54
errors. See also exceptions; exceptions,

handling
compile time, 152
handling, 149
logical, 154–155
runtime, 152–153
semantic, 154
syntactical, 154
types of, 153

escape sequences, 209–210
ETags, 364
eval command, 353
except clause

combining specific clauses with
generic, 167–170

defined, 157
listing exception arguments, 164
multiple clauses, 165–167
single clause, 164–165
using, 158–161

Exception exception, 155
exceptions. See also errors

arguments for, 161–163
built-in, 155

371371 Index

custom, 176–178
defined, 122, 149
listing arguments, 163–164
online resources, 331
raising, 174–175

exceptions, handling
except clause, 158–161
finally clause, 178–180
length checking, 137
multiple exceptions, 164–167
nesting, 170–173
passing error information to caller,

175–176
raising exceptions, 174–175
range checking, 123
single exception, 156–158
specific and unknown exceptions,

167–170
exec() command, 79
exemaker library, 333
exit() command, 54–56
expandtabs() function, 213
exponents, 87, 89
expressions, 95, 113
extend() function, 232, 264
extending classes, 287–290
extendleft() function, 264
Extensible Markup Language (XML), 16,

296, 335–336
extensions, file, 294

• F •
\f escape sequence, 210
features, 13, 58
Fedora Core, 29
Fermilab, 17
fields, database, 359
FIFO (first in/first out), 244
file storage

creating files, 298–301
deleting files, 308

overview, 294–295
reading files, 301–303
structure of content, 295–298
supported file types, 299
writing data to files, 303–307

__file__ attribute, 194
FileNotFoundError exception, 155
fill character, 220
finally clause

exceptions and, 150
overview, 178–180

find() function, 217, 218
first in/first out (FIFO), 244
float() function, 90
float type, 87
floating-point values

formatting strings, 221
overview, 87–88
reasons for multiple numeric types, 89

flow control. See control statements
fluid dynamics, 88
flushing data, 300
folders, 294
Fonts/Tabs tab, IDLE, 63–64
for loops
break statements, 136–138
continue statements, 138–139
creating, 135
deque type and, 264
else clause, 141–142
nesting, 145–147
pass clause, 140–141
for statement, 134
using with lists, 231
while statement versus, 144

format() function, 219–221
formfeed character, 210
forward slash (/), 98, 103, 295
freezing applications, 152, 261
from...import statements, 188–191
ftpparse library, 333
full() function, 261

372 Beginning Programming with Python For Dummies

function arguments
default values, 110–111
overview, 108
required, 108–110
using keywords, 110
variable number of, 111–112

functions
calling, 107–108
code reusability and, 104–105
comparing output from, 114
defined, 104
defining, 105–107
overloading, 268
partial, 331
purpose of, 104
returning data from, 112–113
user input, 114–116

FUNCTIONS topic, 50

• G •
GCC (GNU Compiler Collection), 28
General tab, IDLE, 65–66
generators, 331
geocoding, 359
Geographic Information System (GIS),

344, 359
get() function, 241, 261
getaddrinfo() function, 315
__getattribute__() function, 164
gethostbyaddr() function, 313, 317
gethostbyname() function, 313, 317
gethostname() function, 317
getserverbyport() function, 316
getters/setters, 285, 297
GIMP, 342
GIS (Geographic Information System),

344, 359
Github, 348
GNU Compiler Collection (GCC), 28
Go.com, 17
Google, 17

Google App Engine, 342
Google Code, 348
Google Maps, 359
grabscreen library, 333
Graphic User Interface (GUI), 17,

359–360
graphs, 361–362
greater-than (>) operator, 98, 103
greater-than or equal (>=) operator,

99, 103
green text in IDLE, 61
GUI (Graphic User Interface), 17, 359–360
-h option, 43

• H •
handling exceptions. See exceptions,

handling
headers, email, 311
help

Additional Help Sources feature, 66
command for, 48–49, 53–54
displaying, 43
help mode, 48–49, 50–52
in IDLE, 62–63
for specific commands or topics,

52–54
Hewlett-Packard Unix (HP-UX), 22
hex() function, 86
hexadecimal values, 86, 210
hierarchy of tuples, 247–248
highlighting code, 63–64, 334–335
horizontal tab character, 210
host address, 313–314
hostname, 317–318
Houdini, 342
hour value, 92
HP-UX (Hewlett-Packard Unix), 22
HTML (Hypertext Markup Language),

324–325, 336
-i option, 43, 45

373373 Index

• I •
IDE (Integrated Development

Environment), 45, 334, 352
identity operators, 102, 103
IDLE (Interactive Development

Environment). See also command-
line Python

accessing on Mac, 36
accessing on Windows, 32–33
color coding in, 37, 61, 63–64
command-line Python versus, 58
commands in, 60
comments in, 74–77
configuration, 63–66
Edit window, 67–68
exiting, 80
feature overview, 58
help in, 62–63
indentation in, 72–73
overview, 58
Python versions and, 29
running applications from, 71–72, 79–80
saving files, 69–70
shortcut keys, 65
starting, 59
testing installation, 36–37

IETF (Internet Engineering Task
Force), 349

if statements
code blocks for, 120–121
if...elif statements, 125–128
if...else statements, 124–125
multiple comparisons for, 121–123
nesting, 129–132
overview, 118
using relational operators, 119–120

IIS (Internet Information Server), 342
imaging library, 333
immutable types, 245
import statements

ignoring case in, 44

importing entire module, 187–188
importing only needed attributes,

188–191
overview, 183, 185–186
using, 162

in operator, 102, 103, 236
indentation, 63, 72–73
index

for dictionaries, 250
for lists, 229
for lists, negative, 230
for tuples, 247

index() function, 217, 244, 306
Industrial Light & Magic, 17
inheritance, 268, 287
__init__() constructor function,

275–276
initializing values, 275
__initializing__ attribute, 194
Inkscape, 342
input() function, 114–115
insert() function, 232, 233
insertion pointer, 208–209
inspecting code, 43
installing applications, 350–351
installing Python

on Linux, 30–32
on Mac, 27–29
testing installation, 36–38
on Windows, 25–27

instances
creating, 270
defined, 268
methods, 274–275
variables, 279–280

instantiation, 269
int() function, 90, 306
integers, 86–87, 220
Integrated Development Environment

(IDE), 45, 334, 352
Interactive Development Environment.

See IDLE

374 Beginning Programming with Python For Dummies

interactive environment, 354
Internet Engineering Task Force

(IETF), 349
Internet Information Server (IIS), 342
IOError exception, 162
IPv4 (Internet Protocol version 4), 315
IPv6 (Internet Protocol version 6), 315
IPython, 354
IRLib library, 362–363
is not operator, 102, 103
is operator, 102, 103
isalnum() function, 213
isalpha() function, 213
isdecimal() function, 213
isdigit() function, 214
islower() function, 214
isnumeric() function, 214
Isort, 355
isspace() function, 214
istitle() function, 214
isupper() function, 214
items() function, 282
iterable items, 264

• J •
j identifier, 88
Java

development time, 15
Python versus, 19
using libraries in Python, 363

JavaScript, 16, 336
job opportunities

data mining, 344–345
embedded systems interaction, 345
GIS, 344
IT departments, 341–342
network administration, 343
programming languages and, 15
QA, 340
real-time data analysis, 346
scientific tasks, 345–346

specialty scripting, 342–343
teaching, 343

join() function, 214
JPype library, 363
jQuery, 336
Jython, 363

• K •
KeyboardInterrupt exception, 155, 172
keys() function, 250–251
key/value pairs. See dictionaries
keywords topic, 50
Komodo Edit, 58, 352
**kwargs argument list, 281

• L •
Language Integrated Query (LINQ), 16
last in/first out (LIFO), 244
Launchpad, 348
Lawrence Livermore National Library, 17
learning curve, 15
LearnPython.org tutorial, 331
len() function, 214, 232, 253
length checking, 137
less-than (<) operator, 99, 103
less-than or equal (<=) operator,

99, 103
letter analogy, 311–312, 318–319
libraries

defined, 183
finding online, 357
Google Maps, 359
httplib2, 364
IRLib, 362–363
JPype, 363
NumPy, 16
PrettyTable, 360
PyAudio, 360–361
PyCrypto, 358
PyQtGraph, 361–362

375375 Index

SciPy, 16
socket, 313, 315, 316, 317
SQLAlchemy, 358–359
third-party libraries, 332–333
TkInter, 359–360
Twisted Matrix, 364

license() command, 49
LIFO (last in/first out), 244
Lightwave, 342
linefeed character, 210
lineno warning level, 43
LINQ (Language Integrated Query), 16
Linux

accessing Python on, 36
installing Python, 30–32
Python support, 22

lists
accessing items in, 228–230
computer view of, 225–226
Counter object for, 240–242
creating, 226–227
creating stacks using, 256–260
functions for, 228
looping through, 231
modifying items in, 232–235
mutable types, 245
negative indexes, 230
overview, 223–225
range of values in, 229
searching in, 236–238
sorting, 238–240
using operators with, 236
zero-based indexes, 229

ljust() function, 214
__loader__ attribute, 194
local hostname, 317–318
logical errors, 154–155
logical operators

listing of, 99
multiple comparisons for if

statements, 121–123
precedence, 103

loops
break statements, 136–138
continue statements, 138–139
deque type and, 264
else clause, 141–142
endless, 143
for loops, 134–135
nesting, 145–147
overview, 133–134
pass clause, 140–141
using with lists, 231
while statements, 143–145

lower() function, 214
lstrip() function, 214
-m option, 43

• M •
Mac OS X

accessing Python, 35–36
installing Python, 27–29
Python support, 22

mantissa, 89
mathematic applications, 16
max() function, 214, 216
Maya, 342
members, class, 268
membership operators, 102, 103
memory, and floating-point values, 89
MemoryError exception, 155
Mercurial version control, 355–356
message warning level, 43
methods

class, 273–274
defined, 269
instance, 274–275
instance variables and, 279
variable argument lists for,

281–282
microsecond value, 92
Microsoft Disk Operating System

(MS-DOS), 22

376 Beginning Programming with Python For Dummies

Microsoft Windows
accessing IDLE, 32–33
accessing Python from command

prompt, 34–35
ignoring case in import statements, 44
installing Python, 25–27
opening pydoc application, 198
platform support, 22

MIME (Multipurpose Internet Mail
Extensions), 319–321

min() function, 214
minus sign (-), 97, 98, 103
minute value, 92
Modo, 342
module warning level, 43
modules

defined, 183
finding on disk, 191–193
finding online, 357
from...import statements, 188–191
grouping code and, 184–185
ignoring paths for, 43
importing, 92, 185–188
numeric processing, 345
opening pydoc application, 198–200
quick-access documentation links,

200–201
running, 43
scientific, 345
searching documentation, 202–204
viewing attributes in, 193–197

modules topic, 50
month value, 92
MorphOS, 22
MotionBuilder, 342
MS-DOS (Microsoft Disk Operating

System), 22
multiline comments, 74–75
multiplatform support, 19, 21–22
multiple processors, 245
multiplication operator (*), 98,

103, 236

Multipurpose Internet Mail Extensions
(MIME), 319–321

multithreaded applications, 261
mutable types, 245, 248

• N •
\n escape sequence, 210, 215, 299
__name__ attribute, 194
NASA (National Space and Aeronautics

Administration), 17
negation operator (-), 97
nesting

defined, 129
exception handling, 170–173
if statements, 129–132
loops, 145–147

network administration, 343
New York Stock Exchange, 17
newline attribute, 299
not equal (!=) operator, 98, 103
not in operator, 102, 103
not operator, 99, 103
now() function, 92
Nuke, 342
number sign (#), 74, 76
numeric types

complex numbers, 88
floating-point values, 87–88
integers, 86–87
reasons for multiple, 89

NumPy library, 16, 362
-O option, 43

• O •
ObjectDomain, 17
objects, 269
oct() function, 86
octal numeric values, 210
-OO option, 43, 45
open() function, 79, 162, 299

377377 Index

open source, 19
operands, 96
Operating System 2 (OS/2), 22
Operating System 390 (OS/390), 22
operators

arithmetic, 97–98
assignment, 101
binary, 96
bitwise, 99–100
comparisons and, 95
identity, 102
logical, 99
membership, 102
overloading, 269, 282–284
overview, 95–97
precedence, 103
relational, 98–99
ternary, 96
unary, 96, 97
using with lists, 236

optimizing code, 43
or operator, 99
ord() function, 90
orphaned projects, 351
os._exit() command, 56
OS/2 (Operating System 2), 22
OS/390 (Operating System 390), 22
os.environ[] attributes, 192–193
os.pathsep constant, 193
os.remove() function, 308
os.rmdir() function, 308
overloading

functions, 268
operators, 269, 282–284

• P •
__package__ attribute, 194
padding strings with zeroes, 215
Paint Shop Pro, 342
PalmOS, 22
parent classes, 287

parentheses (), 103, 106, 246
partial functions, 331
pass clause

overview, 140–141
for while statements, 144

PATH environment variable, 26, 34–35
paths, directory, 295
pdoc, 351–352
performance

resources for, 338
using virtual environments, 349

Perl, 20
PHP, 336
PIL (Python Imaging Library), 333
platform support, 21–22
Playstation, 22
plus sign (+)

addition operator, 98
concatenation using, 212, 236
operator precedence, 103
overloading, 283–284
as unary operator, 97
using indentation with, 72
using with tuples, 247

Pocket PC, 22
pop() function, 232, 234, 257, 264
POP3 (Post Office Protocol 3), 312
popleft() function, 264
ports, 314–316
positional arguments, 110
Post Office Protocol 3 (POP3), 312
precedence, operator, 103
precision of decimal number, 220
PrettyTable library, 360
print() function

testing installation, 36–37
typing commands, 46
using in application, 68–69
viewing command result, 46–47

procedures
commands and, 46
computers and, 10–11

378 Beginning Programming with Python For Dummies

defined, 9
separating from user interface, 304
tasks as, 9–10

processors, multiple, 245
production servers, 350
production-grade classes, 287
Program Files directory, 26
programming

application usage types, 16–17
code reusability, 104–105
common mistakes, 336–337
communication with computer, 94
exceptions and, 150–151
knowing multiple languages, 341
languages, 12, 14, 19–20
Python advantages, 15

protocol, defined, 310
prototypes, 16
Psion, 22
purple text in IDLE, 61
put() function, 261
.py files, 42
PyAudio library, 360–361
.pyco files, 42
PyCrypto library, 358
pydbgr, 353
pydoc application

opening, 198–200
quick-access links, 200–201
searching, 202–204

PyGame library, 361
PyInstaller, 350–351
PyOpenGL, 362
PyQtGraph library, 361–362
Python

advantages of, 15
applications written in, 18
C# versus, 19
documentation, 62–63
downloading, 22–23
Embedded Python, 345

environment variables for, 35
installing on Linux, 30–32
installing on Mac, 27–29
installing on Windows, 25–27
Java versus, 19
language comparisons online, 19
online documentation, 330
online tutorial, 331
organizations using, 17–18
Perl versus, 20
platform support, 21–22
popularity of, 15
reporting problems, 330
uses for, 16–17
using Java libraries in, 363
web programming using, 332

Python and XML Processing site, 336
python command, 78
Python GUI. See IDLE
Python Imaging Library (PIL), 333
PYTHONCASEOK environment variable,

35, 44
PYTHONDEBUG environment

variable, 44
PYTHONDEFAULTHANDLER environment

variable, 45
pythondoc library, 333
PythonEditors wiki, 334
PYTHONFAULTHANDLER environment

variable, 35
PYTHONHASHSEED environment variable,

35, 45
PYTHONHOME environment variable,

35, 45
PYTHONINSPECT environment

variable, 45
PYTHONIOENCODING environment

variable, 35, 45
PYTHONNOUSERSITE environment

variable, 45
PYTHONOPTIMIZE environment

variable, 45

procedures (continued)

379379 Index

PYTHONPATH environment variable, 35,
45, 191

PYTHONSTARTUP environment variable,
35, 45

PYTHONUNBUFFERED environment
variable, 45

PYTHONVERBOSE environment variable, 45
python.vim utility, 335
Pythonware site, 332–333
PYTHONWARNINGS environment

variable, 45
PYTHONWRITEBYTECODE environment

variable, 44
PyUnit, 354–355

• Q •
q command, 199
-q option, 43
QA (Quality Assurance), 340
QNX, 22
quantum mechanics, 88
queue type

defined, 244
sequence types, 224
using, 260–262

quit() command, 38, 54–55

• R •
\r escape sequence, 210
raising exceptions. See also exceptions,

handling
defined, 150
overview, 174–175
passing error information to caller,

175–176
range checking, 121, 123
range of values in list, 229
Raspberry Pi, 343, 345
RDBMS (Relational Database

Management System), 359

read() function, 79
readability of code, 1, 15
reading files, 301–303
README files, 40
real-time data analysis, 346
records, database, 358
Red Hat, 17, 29
Red Hat Package Manager (RPM), 29
regular expressions, 331
Relational Database Management System

(RDBMS), 359
relational operators

listing of, 98–99
precedence, 103
using with if statements, 119–120

relative paths, 295
remove() function, 193, 232, 234,

264, 306
repetition, 212
repetitive tasks. See loops
replace() function, 217
reporting problems, 330
required arguments, 108–110
resources

common mistakes, 336–337
IDEs, 334
LearnPython.org tutorial, 331
online documentation, 330
performance, 338
third-party libraries, 332–333
Unicode characters, 337
web programming, 332
XML, 335–336

ResourceWarning exception, 155
returning data from functions, 112–113
reusable code, 104–105
reverse() function, 240
rfind() function, 217, 218
rindex() function, 217
RISC OS, 22
rjust() function, 214
rmtree() function, 308

380 Beginning Programming with Python For Dummies

Roundup Issue Tracker, 348
RPM (Red Hat Package Manager), 29
rstrip() function, 214
runnable code, 184
running applications

from command line, 78
defined, 68
from Edit window, 79
in IDLE, 71–72, 79–80

runtime errors, 152–153

• S •
-s option, 43, 45
-S option, 43
scientific applications, 16, 345–346
scientific notation, 87
SciPy library, 16, 362
screenshots in book, 32
Scribus, 342
SD (Secure Digital), 83
searching

IRLib library, 362–363
in lists, 236–238
module documentation, 202–204
in strings, 217–219

second value, 92
Secure Digital (SD), 83
seeding with random values, 45
selection tree, 129
self object, 274, 283
semantic errors, 154
sequences, 224–225, 243–244. See also

lists
serialization, 331
Series 60, 22
server applications, 332
sets, 331
setters, 285, 297
shell, 54
shortcut keys for IDLE, 65
shutil.rmtree() function, 308

Simple Mail Transfer Protocol (SMTP),
309–310, 321–322, 324

Simple Object Access Protocol
(SOAP), 333

single quote ('), 207, 209
single-line comments, 74–75
__sizeof__ attribute, 194, 196
SMTP (Simple Mail Transfer Protocol),

309–310, 321–322, 324
smtplib module, 321
SOAP (Simple Object Access

Protocol), 333
socket library, 313, 315, 316, 317
Softimage, 342
Solaris, 22
Solid State Drive (SSD), 293
sort() function, 239
sorting lists, 238–240
sound technologies, 361
spaghetti code, 267
special characters, 208–211
split() function, 193, 214, 216, 306
splitlines() function, 215
SQL (Structured Query Language), 16,

336, 359
SQLAlchemy library, 358–359
square brackets [], 211, 226, 229
squeeze library, 333
SSD (Solid State Drive), 293
stacks

defined, 244
sequence types, 224
using, 256–260

startswith() function, 217
str() function, 42, 91
str type, 45
__str__() function, 284, 285, 297
strerror attribute, 162, 175–176, 177
strings

creating from characters, 207–208
as dictionary keys, 250
formatting, 219–222

381381 Index

functions for, 213–216, 217
overview, 90–91
searching in, 217–219
selecting individual characters in,

211–213
upper() function, 171
using special characters, 208–211
as viewed by computers, 206

strip() function, 215, 216
structured data, 295
Structured Query Language (SQL), 16,

336, 359
subtraction operator (-), 98, 103
sudo command, 31
SUSE Linux, 29
swapcase() function, 215
switch statements, 128, 253–256
switches, command-line, 42–44
syntax

concise, 1
errors in, 154
highlighting, 334–335

sys.exit() command, 56
sys.path variable, 43, 45, 192

• T •
\t (tab character), 210
Tcl (Tool Command Language), 360
ternary operator, 96
testing

C++ applications, 340
installation, 36–38
production servers and, 350
using PyUnit, 354–355

third-party libraries, 332–333
throwing exceptions, 150, 174–175. See

also exceptions, handling
time() function, 92
TIOBE web site, 15
title() function, 215
TkInter library, 333, 359–360

TODO list management, 348
Tool Command Language (Tcl), 360
tools

bug-tracking sites, 348
IPython, 354
Isort, 355
Komodo Edit, 352
Mercurial version control, 355–356
pdoc, 351–352
pydbgr, 353
PyInstaller, 350–351
PyUnit, 354–355
Roundup Issue Tracker, 348–349
VirtualEnv, 349–350

topics keyword, 50
traceback, 45
Trigger, 343
try block, 156, 164
tuples

defined, 244
hierarchy of, 247–248
sequence types, 224
using, 245–248

Twisted Matrix, 364
type() method, 90
typographical characters, 209

• U •
\u escape sequence, 210
-u option, 43, 45
UAC (User Access Control), 26
Ubuntu, 31
unary operators

defined, 96
listing of, 97
precedence, 103

uncommenting lines, 77
Unicode characters, 210, 337
unit testing, 354–355
Universal Serial Bus (USB), 83, 293
unstructured data, 295

382 Beginning Programming with Python For Dummies

update() function, 241, 252
upper() function, 171, 215
USB (Universal Serial Bus), 83, 293
UsefulModules site, 357
User Access Control (UAC), 26
user input, 114–116
user interfaces, 17, 304

• V •
\v escape sequence, 210
-V option, 43
-v option, 43, 45
ValueError exception, 168, 177
variables

assigning values, 85
class, 268, 278–279
defined, 84
determining type of, 90
instance, 269, 279–280
returning data from functions, 113

verbose mode, 43
version control, 355–356
--version option, 43
vertical tab character, 210
VirtualEnv, 349–350
Visual Basic, 15
VMS (Virtual Memory System), 22
-W option, 43, 45

• W •
W3Schools site, 335–336
warning level, 43
web programming, 16, 332

while statements
nesting, 145–147
overview, 143–144
using, 144–145

whitespace, removing, 215
widgets library, 333
winsound module, 361
with statement, 299
writerow() function, 300
writing data to files, 303–307

• X •
\x escape sequence, 210
-x option, 44
-X option, 44
XML (Extensible Markup Language), 16,

296, 335–336

• Y •
Yahoo!, 18
year value, 92
Yellow Dog Linux, 29
YouTube, 18

• Z •
zero-based indexes, 229
ZeroDivisionError exception, 167, 169
zeroes, padding with, 215
zfill() function, 215
.zip files, 296
Zope, 18
z/OS, 22

Nikki
Typewriter
uploaded by [stormrg]

About the Author
John Mueller is a freelance author and technical editor. He has writing in
his blood, having produced 95 books and more than 300 articles to date.
The topics range from networking to artificial intelligence and from data-
base management to heads-down programming. Some of his current books
include a Windows command-line reference, books on VBA and Visio 2007, a
C# design and development manual, and an IronPython programmer’s guide.
His technical editing skills have helped more than 63 authors refine the con-
tent of their manuscripts. John has provided technical editing services to
both Data Based Advisor and Coast Compute magazines. He has also contrib-
uted articles to magazines such as Software Quality Connection, DevSource,
InformIT, SQL Server Professional, Visual C++ Developer, Hard Core Visual
Basic, asp.netPRO, Software Test and Performance, and Visual Basic Developer.
Be sure to read John’s blog at http://blog.johnmuellerbooks.com/.

When John isn’t working at the computer, you can find him outside in the
garden, cutting wood, or generally enjoying nature. John also likes making
wine, baking cookies, and knitting. When not occupied with anything else, he
makes glycerin soap and candles, which come in handy for gift baskets. You
can reach John on the Internet at John@JohnMuellerBooks.com. John is
also setting up a website at http://www.johnmuellerbooks.com/. Feel
free to take a look and make suggestions on how he can improve it.

Dedication
Some people are simply there in your life — as reliable as the day is long.
Scott and Pegg Conderman are two such people — they have helped me
through an extremely hard time simply by being themselves and knowing just
what to do to make the day a little better.

Author’s Acknowledgments
Thanks to my wife, Rebecca. Even though she is gone now, her spirit is in
every book I write, in every word that appears on the page. She believed in
me when no one else would.

Russ Mullen deserves thanks for his technical edit of this book. He greatly
added to the accuracy and depth of the material you see here. Russ is always
providing me with great URLs for new products and ideas. However, it’s the
testing that Russ does that helps most. He’s the sanity check for my work.
Russ also has different computer equipment from mine, so he’s able to point
out flaws that I might not otherwise notice.

Matt Wagner, my agent, deserves credit for helping me get the contract in
the first place and taking care of all the details that most authors don’t really
consider. I always appreciate his assistance. It’s good to know that someone
wants to help.

A number of people read all or part of this book to help me refine the approach,
test the coding examples, and generally provide input that all readers wish they
could have. These unpaid volunteers helped in ways too numerous to mention
here. I especially appreciate the efforts of Eva Beattie, Glenn A. Russell, Emanuel
Jonas, and Michael Sasseen, who provided general input, read the entire book,
and selflessly devoted themselves to this project.

Finally, I would like to thank Kyle Looper, Susan Christophersen, and the rest
of the editorial and production staff.

Publisher’s Acknowledgments

Senior Acquisitions Editor: Kyle Looper

Project and Copy Editor: Susan Christophersen

Technical Editor: Russ Mullen

Editorial Assistant: Claire Johnson

Sr. Editorial Assistant: Cherie Case

Project Coordinator: Patrick Redmond

Cover Image: © iStock.com / Glam-Y

	Title Page
	Copyright Page
	Contents at a Glance
	Table of Contents
	Introduction
	About This Book
	Foolish Assumptions
	Icons Used in This Book
	Beyond the Book
	Where to Go from Here

	Part I: Getting Started with Python
	Chapter 1: Talking to Your Computer
	Understanding Why You Want to Talk to Your Computer
	Knowing that an Application is a Form of Communication
	Thinking about procedures you use daily
	Writing procedures down
	Seeing applications as being like any other procedure
	Understanding that computers take things literally

	Defining What an Application Is
	Understanding that computers use a special language
	Helping humans speak to the computer

	Understanding Why Python is So Cool
	Unearthing the reasons for using Python
	Deciding how you can personally benefit from Python
	Discovering which organizations use Python
	Finding useful Python applications
	Comparing Python to other languages

	Chapter 2: Getting Your Own Copy of Python
	Downloading the Version You Need
	Installing Python
	Working with Windows
	Working with the Mac
	Working with Linux

	Accessing Python on Your Machine
	Using Windows
	Using the Mac
	Using Linux

	Testing Your Installation

	Chapter 3: Interacting with Python
	Opening the Command Line
	Starting Python
	Using the command line to your advantage
	Using Python environment variables to your advantage

	Typing a Command
	Telling the computer what to do
	Telling the computer you’re done
	Seeing the result

	Using Help
	Getting into help mode
	Asking for help
	Leaving help mode
	Obtaining help directly

	Closing the Command Line

	Chapter 4: Writing Your First Application
	Understanding the Integrated DeveLopment Environment (IDLE)
	Starting IDLE
	Using standard commands
	Understanding color coding
	Getting GUI help
	Configuring IDLE

	Creating the Application
	Opening a new window
	Typing the command
	Saving the file

	Running the Application
	Understanding the Use of Indentation
	Adding Comments
	Understanding comments
	Using comments to leave yourself reminders
	Using comments to keep code from executing

	Loading and Running Existing Applications
	Using the command line or terminal window
	Using the Edit window
	Using the Python Shell window or Python command line

	Closing IDLE

	Part II: Talking the Talk
	Chapter 5: Storing and Modifying Information
	Storing Information
	Seeing variables as storage boxes
	Using the right box to store the data

	Defining the Essential Python Data Types
	Putting information into variables
	Understanding the numeric types
	Understanding Boolean values
	Understanding strings

	Working with Dates and Times

	Chapter 6: Managing Information
	Controlling How Python Views Data
	Making comparisons
	Understanding how computers make comparisons

	Working with Operators
	Defining the operators
	Understanding operator precedence

	Creating and Using Functions
	Viewing functions as code packages
	Understanding code reusability
	Defining a function
	Accessing functions
	Sending information to functions
	Returning information from functions
	Comparing function output

	Getting User Input

	Chapter 7: Making Decisions
	Making Simple Decisions Using the if Statement
	Understanding the if statement
	Using the if statement in an application

	Choosing Alternatives Using the if
	Understanding the if
	Using the if
	Using the if

	Using Nested Decision Statements
	Using multiple if or if
	Combining other types of decisions

	Chapter 8: Performing Repetitive Tasks
	Processing Data Using the for Statement
	Understanding the for statement
	Creating a basic for loop
	Controlling execution with the break statement
	Controlling execution with the continue statement
	Controlling execution with the pass clause
	Controlling execution with the else statement

	Processing Data Using the while Statement
	Understanding the while statement
	Using the while statement in an application

	Nesting Loop Statements

	Chapter 9: Dealing with Errors
	Knowing Why Python Doesn’t Understand You
	Considering the Sources of Errors
	Classifying when errors occur
	Distinguishing error types

	Catching Exceptions
	Basic exception handling
	Handling more specific to less specific exceptions
	Nested exception handling

	Raising Exceptions
	Raising exceptions during exceptional conditions
	Passing error information to the caller

	Creating and Using Custom Exceptions
	Using the finally Clause

	Part III: Performing Common Tasks
	Chapter 10: Interacting with Modules
	Creating Code Groupings
	Importing Modules
	Using the import statement
	Using the from

	Finding Modules on Disk
	Viewing the Module Content
	Using the Python Module Documentation
	Opening the pydoc application
	Using the quick-access links
	Typing a search term
	Viewing the results

	Chapter 11: Working with Strings
	Understanding That Strings Are Different
	Defining a character using numbers
	Using characters to create strings

	Creating Stings with Special Characters
	Selecting Individual Characters
	Slicing and Dicing Strings
	Locating a Value in a String
	Formatting Strings

	Chapter 12: Managing Lists
	Organizing Information in an Application
	Defining organization using lists
	Understanding how computers view lists

	Creating Lists
	Accessing Lists
	Looping Through Lists
	Modifying Lists
	Searching Lists
	Sorting Lists
	Working with the Counter Object

	Chapter 13: Collecting All Sorts of Data
	Understanding Collections
	Working with Tuples
	Working with Dictionaries
	Creating and using a dictionary
	Replacing the switch statement with a dictionary

	Creating Stacks Using Lists
	Working with queues
	Working with deques

	Chapter 14: Creating and Using Classes
	Understanding the Class as a Packaging Method
	Considering the Parts of a Class
	Creating the class definition
	Considering the built-in class attributes
	Working with methods
	Working with constructors
	Working with variables
	Using methods with variable argument lists
	Overloading operators

	Creating a Class
	Using the Class in an Application
	Extending Classes to Make New Classes
	Building the child class
	Testing the class in an application

	Part IV: Performing Advanced Tasks
	Chapter 15: Storing Data in Files
	Understanding How Permanent Storage Works
	Creating Content for Permanent Storage
	Creating a File
	Reading File Content
	Updating File Content
	Deleting a File

	Chapter 16: Sending an E-Mail
	Understanding What Happens When You Send E-Mail
	Viewing e-mail as you do a letter
	Defining the parts of the envelope
	Defining the parts of the letter

	Creating the E-mail Message
	Working with a text message
	Working with an HTML message

	Seeing the E-mail Output

	Part V: The Part of Tens
	Chapter 17: Ten Amazing Programming Resources
	Working with the Python Documentation Online
	Using the LearnPython.org Tutorial
	Performing Web Programming Using Python
	Getting Additional Libraries
	Creating Applications Faster Using an IDE
	Checking Your Syntax with Greater Ease
	Using XML to Your Advantage
	Getting Past the Common Python Newbie Errors
	Understanding Unicode
	Making Your Python Application Fast

	Chapter 18: Ten Ways to Make a Living with Python
	Working in QA
	Becoming the IT Staff for a Smaller Organization
	Performing Specialty Scripting for Applications
	Administering a Network
	Teaching Programming Skills
	Helping People Decide on Location
	Performing Data Mining
	Interacting with Embedded Systems
	Carrying Out Scientific Tasks
	Performing Real-Time Analysis of Data

	Chapter 19: Ten Interesting Tools
	Tracking Bugs with Roundup Issue Tracker
	Creating a Virtual Environment Using VirtualEnv
	Installing Your Application Using PyInstaller
	Building Developer Documentation Using pdoc
	Developing Application Code Using Komodo Edit
	Debugging Your Application Using pydbgr
	Entering an Interactive Environment using IPython
	Testing Python Applications using PyUnit
	Tidying Your Code Using Isort
	Providing Version Control Using Mercurial

	Chapter 20: Ten Libraries You Need to Know About
	Developing a Secure Environment Using PyCrypto
	Interacting with Databases Using SQLAlchemy
	Seeing the World Using Google Maps
	Adding a Graphical User Interface Using TkInter
	Providing a Nice Tabular Data Presentation Using PrettyTable
	Enhancing Your Application with Sound Using PyAudio
	Manipulating Images using PyQtGraph
	Locating Your Information Using IRLib
	Creating an Interoperable Java Environment Using JPype
	Accessing Local Network Resources Using Twisted Matrix
	Accessing Internet Resources Using Libraries

	Index
	About the Author
	Uploaded by [StormRG]

